New Approaches to Stretched Film Sample Alignment and Data Collection for Vibrational Linear Dichroism

. 2023 Oct 10 ; 8 (40) : 37490-37500. [epub] 20230928

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37841173

Rapid measurements of vibrational linear dichroism (VLD) infrared spectra are shown to be possible by using stretched polymer films and an extension of existing instrumentation designed for vibrational circular dichroism spectroscopy. Earlier techniques can be extended using additional inexpensive polymer substrates to record good-quality VLD spectra of a significantly wider range of compounds with comparatively short sample-preparation times. The polymer substrates used, polyethylene and polytetrafluoroethylene, are commonly available and inexpensive, and samples are more easily prepared than that for many earlier stretched-film and crystal studies. Data are presented for neutral hydrophobic organic molecules on hydrophobic films including acridine, anthracene, fluorene, and recently synthesized S-(4-((4-cyanophenyl)ethynyl)phenyl)ethanethioate. We extend the approach to polar or ionic species, including 2,2'-bipyridine, 1,10-phenanthroline, and sodium dodecyl sulfate, by oxidizing polyethylene films to change their wetting properties. The combination of new instrumentation and modified sample preparation methods is useful in basic spectroscopy for untangling and assigning complicated infrared spectra. Nevertheless, it is not a panacea as surface-adsorbed molecules are often not monodispersed, and higher analyte concentrations can lead to aggregation and resonance phenomena that have previously been observed for infrared spectra on surfaces. These effects can be assessed by varying the sample concentration. The focus of this paper is experimental, and detailed analysis of most of the spectra lies outside its scope, including some well-studied compounds such as acridine and anthracene that allow comparisons with earlier research.

Zobrazit více v PubMed

Dendisová M.; Jeništová A.; Parchaňská-Kokaislová A.; Matějka P.; Prokopec V.; Švecová M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal. Chim. Acta 2018, 1031, 1–14. 10.1016/j.aca.2018.05.046. PubMed DOI

De Bruyne S.; Speeckaert M. M.; Delanghe J. R. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit. Rev. Clin. Lab Sci. 2018, 55, 1–20. 10.1080/10408363.2017.1414142. PubMed DOI

Beć K. B.; Grabska J.; Huck C. W. Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Anal. Chim. Acta 2020, 1133, 150–177. 10.1016/j.aca.2020.04.015. PubMed DOI

Stuart B.Infrared spectroscopy. In Analytical techniques in forensic science; Wolstenholme R., Jickells S., Forbes S., Eds.; Wiley-Blackwell, 2020.

Haas J.; Mizaikoff B. Advances in mid-infrared spectroscopy for chemical analysis. Annu. Rev. Anal. Chem. 2016, 9, 45–68. 10.1146/annurev-anchem-071015-041507. PubMed DOI

Tinti A.; Tugnoli V.; Bonora S.; Francioso O. Recent applications of vibrational mid-infrared (IR) spectroscopy for studying soil components: a review. J. Cent. Eur. Agric. 2015, 16 (1), 1–22. 10.5513/JCEA01/16.1.1535. DOI

Stephens P. J. Theory of vibrational circular dichroism. J. Phys. Chem. 1985, 89, 748–752. 10.1021/j100251a006. DOI

Kessler J.; Andrushchenko V.; Kapitán J.; Bouř P. Insight into vibrational circular dichroism of proteins by density functional modeling. Phys. Chem. Chem. Phys. 2018, 20, 4926–4935. 10.1039/C7CP08016F. PubMed DOI

Giovannini T.; Egidi F.; Cappelli C. Theory and algorithms for chiroptical properties and spectroscopies of aqueous systems. Phys. Chem. Chem. Phys. 2020, 22, 22864–22879. 10.1039/D0CP04027D. PubMed DOI

Weirich L.; Blanke K.; Merten C. More complex, less complicated? Explicit solvation of hydroxyl groups for the analysis of VCD spectra. Phys. Chem. Chem. Phys. 2020, 22, 12515–12523. 10.1039/D0CP01656J. PubMed DOI

Sato H. A new horizon for vibrational circular dichroism spectroscopy: a challenge for supramolecular chirality. Phys. Chem. Chem. Phys. 2020, 22, 7671–7679. 10.1039/D0CP00713G. PubMed DOI

Nordén B. Applications of linear dichroism spectroscopy. Appl. Spectrosc. Rev. 1978, 14, 157–248. 10.1080/05704927808060393. DOI

Nordén B.; Rodger A.; Dafforn T.. Linear Dichroism and Circular Dichroism: A Textbook on Polarized-Light Spectroscopy; RSC Publishing, 2010.

Hunt G. R.; Ross I. G. Spectrum of azulene. J. Mol. Spectrosc. 1959, 3, 604–620. 10.1016/0022-2852(59)90055-4. DOI

Bree A.; Pal A. J.; Taliani C. An FT-Raman and FT-IR study of the azulene single crystal. Spectrochim. Acta, Part A 1990, 46 (12), 1767–1778. 10.1016/0584-8539(90)80249-X. DOI

Kivinen A.; Ovaska M.; Räsänen M. Polarized infrared spectra: Part 1. Stretched polymer method. Fundamental vibrations of some mono and di-substituted benzenes. J. Mol. Struct. 1983, 95, 141–150. 10.1016/0022-2860(82)90139-9. DOI

Ovaska M.; Kivinen A.; Räsänen M. Polarized infrared spectra: Part 2. Fundamental vibrations of tetrachloroethylene, some mono-di- and trihalogenated methanes and carbon disulfide. J. Mol. Struct. 1983, 98, 19–26. 10.1016/0022-2860(83)90004-2. DOI

Ovaska M.; Kivinen A. An infrared linear dichroism study of carboxylic acids oriented in stretched polyethylene. J. Mol. Struct. 1986, 142, 71–74. 10.1016/0022-2860(86)85065-7. DOI

Radziszewski J. G.; Michl J. Symmetry assignment of vibrations in anthracene, phenazine, and acridine from infrared dichroism in stretched polyethylene. J. Chem. Phys. 1985, 82, 3527–3533. 10.1063/1.448979. DOI

Radziszewski J. G.; Michl J. Fourier-transform infrared linear dichroism. Stretched polyethylene as a solvent in IR spectroscopy. J. Am. Chem. Soc. 1986, 108, 3289–3297. 10.1021/ja00272a024. DOI

Spanget-Larsen J.; Fink N. Molecular symmetry of 2,5-dimethyl-1,6,6aλ4-trithiapentalene. Infrared linear dichroism in stretched polyethylene. J. Phys. Chem. 1990, 94, 8423–8425. 10.1021/j100385a013. DOI

Madsen F.; Terpager I.; Olskær K.; Spanget-Larsen J. Ultraviolet-visible and infrared linear dichroism spectroscopy of 1,8-dihydroxy-9,10-anthraquinone aligned in stretched polyethylene. Chem. Phys. 1992, 165, 351–360. 10.1016/0301-0104(92)87050-J. DOI

Radziszewski J. G.; Downing J. W.; Gudipati M. S.; Balaji V.; Thulstrup E. W.; Michl J. How predictable are IR transition moment directions? Vibrational transitions in propene and deuterated propenes. J. Am. Chem. Soc. 1996, 118, 10275–10284. 10.1021/ja961668+. DOI

Holmén A. Vibrational Transition Moments of Aminopurines:  Stretched Film IR Linear Dichroism Measurements and DFT Calculations. J. Phys. Chem. A 1997, 101, 4361–4374. 10.1021/jp970381b. DOI

Arnaudov M.; Dinkov S. IR-LD-spectral study on the self-association effects of 2-aminopyridine. J. Mol. Struct. 1999, 476, 235–241. 10.1016/S0022-2860(98)00584-5. DOI

Andersen K. B.; Langgard M.; Spanget-Larsen J. Molecular and vibrational structure of 2,2’-dihydroxybenzophenone: infrared linear dichroism and quantum chemical calculations. J. Mol. Struct. 1999, 509, 153–163. 10.1016/S0022-2860(99)00217-3. DOI

Tawa K.; Kamada K.; Ohta K. Azo-dye-structure dependence of photoinduced anisotropy observed in PMMA films. J. Photochem. Photobiol., A 2000, 134, 185–191. 10.1016/S1010-6030(00)00268-9. DOI

Spanget-Larsen J.; Andersen K. B. On the molecular and vibrational structure of 1,6,6aλ4-trithiapentalenes. Analysis of the “bell-clapper” asymmetrical S-S-S stretching mode. Phys. Chem. Chem. Phys. 2001, 3, 908–916. 10.1039/b009728o. DOI

Hansen B. K. V.; Winther M.; Spanget-Larsen J. Intramolecular hydrogen bonding. Spectroscopic and theoretical studies of vibrational transitions in dibenzoylmethane enol. J. Mol. Struct. 2006, 790, 74–79. 10.1016/j.molstruc.2005.10.051. DOI

Nguyen H. T.; Nguyen D. D.; Spanget-Larsen J. Ionic reaction products of iodine with pyridine, 4-methylpyridine, and 4-tert-butylpyridine in a polyethylene matrix. A FTIR polarization spectroscopic investigation. Chem. Phys. Lett. 2019, 716, 119–125. 10.1016/j.cplett.2018.12.010. DOI

Andersen K. B.; Li S.; Lundquist K.; Ugalde M.; Román P.; Lezama L.; Rojo T. Infrared linear dichroism on 1,5-diphenyl-1,3,5-pentanetrione aligned in stretched polyethylene. Acta Chem. Scand. 1998, 52, 1171–1176. 10.3891/acta.chem.scand.52-1171. DOI

Thormann T.; Rogojerov M.; Jordanov B.; Thulstrup E. W. Vibrational polarization spectroscopy of fluorene: alignment in stretched polymers and nematic liquid crystals. J. Mol. Struct. 1999, 509, 93–104. 10.1016/S0022-2860(99)00213-6. DOI

Ivanova B. B.; Arnaudov M. G. Solid state linear-dichroic infrared spectral and theoretical analysis of methionine-containing tripeptides. Spectrochim. Acta, Part A 2006, 65, 56–61. 10.1016/j.saa.2005.09.026. PubMed DOI

Ivanova B. B.; Simeonov V. D.; Arnaudov M. G.; Tsalev D. L. Linear-dichroic infrared spectroscopy - validation and experimental design of the new orientation technique of solid samples as suspension in nematic liquid crystal. Spectrochim. Acta, Part A 2007, 67, 66–75. 10.1016/j.saa.2006.06.025. PubMed DOI

Noda I.; Dowrey A. E.; Marcott C. A spectrometer for measuring time-resolved infrared linear dichroism induced by a small-amplitude oscillatory strain. Appl. Spectrosc. 1988, 42, 203–216. 10.1366/0003702884428310. DOI

Noda I.; Dowrey A. E.; Marcott C.; Story G. M.; Ozaki Y. Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc. 2000, 54, 236A–248A. 10.1366/0003702001950454. DOI

Buffeteau T.; Desbat B.; Turlet J. M. Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis. Appl. Spectrosc. 1991, 45, 380–389. 10.1366/0003702914337308. DOI

Steiner G.; Möller H.; Savchuk O.; Ferse D.; Adler H. J.; Salzer R. Characterisation of ultra-thin polymer films by polarisation modulation FTIR spectroscopy. J. Mol. Struct. 2001, 563–564, 273–277. 10.1016/S0022-2860(01)00438-0. DOI

Spanget-Larsen J.; Christensen D. H.; Thulstrup E. W. Symmetry assignments of vibrations in 9,10-anthraquinone aligned in stretched polyethylene. Spectrochim. Acta, Part A 1987, 43, 331–335. 10.1016/0584-8539(87)80113-7. DOI

Thulstrup E. W.; Michl J.; Eggers J. H. Polarization spectra in stretched polymer sheets. II. Separation of .pi.-.pi.* absorption of symmetrical molecules into components. J. Phys. Chem. 1970, 74, 3868–3878. 10.1021/j100716a005. DOI

Wormell P.; Lacey A. R. Electronic spectra of the naphthyridines: 1,8-naphthyridine. Chem. Phys. 1987, 118, 71–89. 10.1016/0301-0104(87)85037-1. DOI

Davidsson Å.; Nordén B. New details in the polarized spectrum of naphthalene by means of linear dichroism studies in oriented polymer matrices. Chem. Phys. Lett. 1974, 28, 221–224. 10.1016/0009-2614(74)80057-6. DOI

Prelipceanu M.; Prelipceanu O.-S.; Tudose O.-G.; Grytsenko K.; Schrader S.. Oriented growth of pentacene films on vacuum-deposited polytetrafluoroethylene layers aligned by rubbing technique. 2007, arXiv preprint arXiv:0704.0538.

Vallée R.; Damman P.; Dosière M.; Scalmani G.; Brédas J. L. A joint experimental and theoretical study of the infrared spectra of 2-methyl-4-nitroaniline crystals oriented on nanostructured poly(tetrafluoroethylene) substrates. J. Phys. Chem. B 2001, 105, 6064–6069. 10.1021/jp003440l. DOI

Hiratsuka H.; Sekiguchi K.; Hatano Y.; Tanizaki Y.; Mori Y. Polarized absorption spectra of radical ions of some azanaphthalenes and biphenyls in stretched polymer films. Can. J. Chem. 1987, 65, 1185–1189. 10.1139/v87-198. DOI

Rodger A.; Sanders K. J.; Hannon M. J.; Meistermann I.; Parkinson A.; Vidler D. S.; Haworth I. S. DNA structure control by polycationic species: Polyamine, cobalt ammines, and di-metallo transition metal chelates. Chirality 2000, 12, 221–236. 10.1002/(SICI)1520-636X(2000)12:4<221::AID-CHIR9>3.0.CO;2-3. PubMed DOI

Razmkhah K.; Chmel N. P.; Gibson M. I.; Rodger A. Oxidized polyethylene films for orienting polar molecules for linear dichroism spectroscopy. Analyst 2014, 139, 1372–1382. 10.1039/C3AN02322B. PubMed DOI

Murphy-Benenato K. E.; Olivier N.; Choy A.; Ross P. L.; Miller M. D.; Thresher J.; Gao N.; Hale M. R. Synthesis, structure, and SAR of tetrahydropyran-based LpxC inhibitors. Med. Chem. Lett. 2014, 5 (11), 1213–1218. 10.1021/ml500210x. PubMed DOI PMC

Yamaguchi Y.; Ochi T.; Matsubara Y.; Yoshida Z. Highly emissive whole rainbow fluorophores consisting of 1,4-bis(2-phenylethynyl)benzene core skeleton: design, synthesis, and light-emitting characteristics. J. Phys. Chem. A 2015, 119 (32), 8630–8642. 10.1021/acs.jpca.5b05077. PubMed DOI

Smith J.; Arnolds H. Polytetrafluoroethylene tape as a low-cost hydrophobic substrate for drop-coating deposition Raman spectroscopy of proteins. J. Raman Spectrosc. 2018, 49, 1236–1239. 10.1002/jrs.5371. DOI

Ovaska M.; Kivinen A. Polarized infrared spectra: Part 3. The use of perdeuterated polyethylene film. The spectrum of nitrobenzene. J. Mol. Struct. 1983, 101, 255–262. 10.1016/0022-2860(83)85019-4. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H., et al.Gaussian 16, Revision A.03; Gaussian, Inc., 2016.

Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

von Arx T.; Szentkuti A.; Zehnder T. N.; Blacque O.; Venkatesan K. Stable N-heterocyclic carbene (NHC) cyclometalated (ĈC) gold(iii) complexes as blue–blue green phosphorescence emitters. J. Mater. Chem. C 2017, 5, 3765–3769. 10.1039/C6TC05551F. DOI

Javaid R.; Sayyadi N.; Mylvaganam K.; Venkatesan K.; Wang Y.; Rodger A. Design and synthesis of boron complexes as new Raman reporter molecules for sensitive SERS nanotags. J. Raman Spectrosc. 2020, 51 (12), 2408–2415. 10.1002/jrs.6020. DOI

Farrington P. J.; Hill D. J. T.; O’Donnell J. H.; Pomery P. J. Suppression of interference fringes in the infrared spectra of thin polymer films. Appl. Spectrosc. 1990, 44, 901–903. 10.1366/0003702904087163. DOI

Okabayashi H.; Okuyama M.; Kitagawa T.; Miyazawa T. The Raman Spectra and Molecular Conformations of Surfactants in Aqueous Solution and Crystalline States. Bull. Chem. Soc. Jpn. 1974, 47, 1075–1077. 10.1246/bcsj.47.1075. DOI

Kowalska P.; Cheeseman J. R.; Razmkhah K.; Green B.; Nafie L. A.; Rodger A. Experimental and Theoretical Polarized Raman Linear Difference Spectroscopy of Small Molecules with a New Alignment Method Using Stretched Polyethylene Film. Anal. Chem. 2012, 84, 1394–1401. 10.1021/ac202432e. PubMed DOI

Miljković M.; Bird B.; Diem M. Line shape distortion effects in infrared spectroscopy. Analyst 2012, 137, 3954–3964. 10.1039/c2an35582e. PubMed DOI

Schofield A. J.; Blümel R.; Kohler A.; Lukacs R.; Hirschmugl C. J. Extracting pure absorbance spectra in infrared microspectroscopy by modeling absorption bands as Fano resonances. J. Chem. Phys. 2019, 150, 154124.10.1063/1.5085207. PubMed DOI

Oberg K. A.; Palleros D. R. Teflon tape as a sample support for IR spectroscopy. J. Chem. Educ. 1995, 72, 857–861. 10.1021/ed072p857. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...