New Approaches to Stretched Film Sample Alignment and Data Collection for Vibrational Linear Dichroism
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37841173
PubMed Central
PMC10568702
DOI
10.1021/acsomega.3c05774
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Rapid measurements of vibrational linear dichroism (VLD) infrared spectra are shown to be possible by using stretched polymer films and an extension of existing instrumentation designed for vibrational circular dichroism spectroscopy. Earlier techniques can be extended using additional inexpensive polymer substrates to record good-quality VLD spectra of a significantly wider range of compounds with comparatively short sample-preparation times. The polymer substrates used, polyethylene and polytetrafluoroethylene, are commonly available and inexpensive, and samples are more easily prepared than that for many earlier stretched-film and crystal studies. Data are presented for neutral hydrophobic organic molecules on hydrophobic films including acridine, anthracene, fluorene, and recently synthesized S-(4-((4-cyanophenyl)ethynyl)phenyl)ethanethioate. We extend the approach to polar or ionic species, including 2,2'-bipyridine, 1,10-phenanthroline, and sodium dodecyl sulfate, by oxidizing polyethylene films to change their wetting properties. The combination of new instrumentation and modified sample preparation methods is useful in basic spectroscopy for untangling and assigning complicated infrared spectra. Nevertheless, it is not a panacea as surface-adsorbed molecules are often not monodispersed, and higher analyte concentrations can lead to aggregation and resonance phenomena that have previously been observed for infrared spectra on surfaces. These effects can be assessed by varying the sample concentration. The focus of this paper is experimental, and detailed analysis of most of the spectra lies outside its scope, including some well-studied compounds such as acridine and anthracene that allow comparisons with earlier research.
Department of Optics Palacký University Olomouc 17 Listopadu 12 Olomouc 77146 Czech Republic
JASCO Corporation Hachioji Tokyo 192 8537 Japan
JASCO International Co Ltd Hachioji Tokyo 192 0046 Japan
School of Natural Sciences Macquarie University Sydney New South Wales 2109 Australia
School of Science Western Sydney University Locked Bag 1797 Penrith New South Wales 2751 Australia
Zobrazit více v PubMed
Dendisová M.; Jeništová A.; Parchaňská-Kokaislová A.; Matějka P.; Prokopec V.; Švecová M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal. Chim. Acta 2018, 1031, 1–14. 10.1016/j.aca.2018.05.046. PubMed DOI
De Bruyne S.; Speeckaert M. M.; Delanghe J. R. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit. Rev. Clin. Lab Sci. 2018, 55, 1–20. 10.1080/10408363.2017.1414142. PubMed DOI
Beć K. B.; Grabska J.; Huck C. W. Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Anal. Chim. Acta 2020, 1133, 150–177. 10.1016/j.aca.2020.04.015. PubMed DOI
Stuart B.Infrared spectroscopy. In Analytical techniques in forensic science; Wolstenholme R., Jickells S., Forbes S., Eds.; Wiley-Blackwell, 2020.
Haas J.; Mizaikoff B. Advances in mid-infrared spectroscopy for chemical analysis. Annu. Rev. Anal. Chem. 2016, 9, 45–68. 10.1146/annurev-anchem-071015-041507. PubMed DOI
Tinti A.; Tugnoli V.; Bonora S.; Francioso O. Recent applications of vibrational mid-infrared (IR) spectroscopy for studying soil components: a review. J. Cent. Eur. Agric. 2015, 16 (1), 1–22. 10.5513/JCEA01/16.1.1535. DOI
Stephens P. J. Theory of vibrational circular dichroism. J. Phys. Chem. 1985, 89, 748–752. 10.1021/j100251a006. DOI
Kessler J.; Andrushchenko V.; Kapitán J.; Bouř P. Insight into vibrational circular dichroism of proteins by density functional modeling. Phys. Chem. Chem. Phys. 2018, 20, 4926–4935. 10.1039/C7CP08016F. PubMed DOI
Giovannini T.; Egidi F.; Cappelli C. Theory and algorithms for chiroptical properties and spectroscopies of aqueous systems. Phys. Chem. Chem. Phys. 2020, 22, 22864–22879. 10.1039/D0CP04027D. PubMed DOI
Weirich L.; Blanke K.; Merten C. More complex, less complicated? Explicit solvation of hydroxyl groups for the analysis of VCD spectra. Phys. Chem. Chem. Phys. 2020, 22, 12515–12523. 10.1039/D0CP01656J. PubMed DOI
Sato H. A new horizon for vibrational circular dichroism spectroscopy: a challenge for supramolecular chirality. Phys. Chem. Chem. Phys. 2020, 22, 7671–7679. 10.1039/D0CP00713G. PubMed DOI
Nordén B. Applications of linear dichroism spectroscopy. Appl. Spectrosc. Rev. 1978, 14, 157–248. 10.1080/05704927808060393. DOI
Nordén B.; Rodger A.; Dafforn T.. Linear Dichroism and Circular Dichroism: A Textbook on Polarized-Light Spectroscopy; RSC Publishing, 2010.
Hunt G. R.; Ross I. G. Spectrum of azulene. J. Mol. Spectrosc. 1959, 3, 604–620. 10.1016/0022-2852(59)90055-4. DOI
Bree A.; Pal A. J.; Taliani C. An FT-Raman and FT-IR study of the azulene single crystal. Spectrochim. Acta, Part A 1990, 46 (12), 1767–1778. 10.1016/0584-8539(90)80249-X. DOI
Kivinen A.; Ovaska M.; Räsänen M. Polarized infrared spectra: Part 1. Stretched polymer method. Fundamental vibrations of some mono and di-substituted benzenes. J. Mol. Struct. 1983, 95, 141–150. 10.1016/0022-2860(82)90139-9. DOI
Ovaska M.; Kivinen A.; Räsänen M. Polarized infrared spectra: Part 2. Fundamental vibrations of tetrachloroethylene, some mono-di- and trihalogenated methanes and carbon disulfide. J. Mol. Struct. 1983, 98, 19–26. 10.1016/0022-2860(83)90004-2. DOI
Ovaska M.; Kivinen A. An infrared linear dichroism study of carboxylic acids oriented in stretched polyethylene. J. Mol. Struct. 1986, 142, 71–74. 10.1016/0022-2860(86)85065-7. DOI
Radziszewski J. G.; Michl J. Symmetry assignment of vibrations in anthracene, phenazine, and acridine from infrared dichroism in stretched polyethylene. J. Chem. Phys. 1985, 82, 3527–3533. 10.1063/1.448979. DOI
Radziszewski J. G.; Michl J. Fourier-transform infrared linear dichroism. Stretched polyethylene as a solvent in IR spectroscopy. J. Am. Chem. Soc. 1986, 108, 3289–3297. 10.1021/ja00272a024. DOI
Spanget-Larsen J.; Fink N. Molecular symmetry of 2,5-dimethyl-1,6,6aλ4-trithiapentalene. Infrared linear dichroism in stretched polyethylene. J. Phys. Chem. 1990, 94, 8423–8425. 10.1021/j100385a013. DOI
Madsen F.; Terpager I.; Olskær K.; Spanget-Larsen J. Ultraviolet-visible and infrared linear dichroism spectroscopy of 1,8-dihydroxy-9,10-anthraquinone aligned in stretched polyethylene. Chem. Phys. 1992, 165, 351–360. 10.1016/0301-0104(92)87050-J. DOI
Radziszewski J. G.; Downing J. W.; Gudipati M. S.; Balaji V.; Thulstrup E. W.; Michl J. How predictable are IR transition moment directions? Vibrational transitions in propene and deuterated propenes. J. Am. Chem. Soc. 1996, 118, 10275–10284. 10.1021/ja961668+. DOI
Holmén A. Vibrational Transition Moments of Aminopurines: Stretched Film IR Linear Dichroism Measurements and DFT Calculations. J. Phys. Chem. A 1997, 101, 4361–4374. 10.1021/jp970381b. DOI
Arnaudov M.; Dinkov S. IR-LD-spectral study on the self-association effects of 2-aminopyridine. J. Mol. Struct. 1999, 476, 235–241. 10.1016/S0022-2860(98)00584-5. DOI
Andersen K. B.; Langgard M.; Spanget-Larsen J. Molecular and vibrational structure of 2,2’-dihydroxybenzophenone: infrared linear dichroism and quantum chemical calculations. J. Mol. Struct. 1999, 509, 153–163. 10.1016/S0022-2860(99)00217-3. DOI
Tawa K.; Kamada K.; Ohta K. Azo-dye-structure dependence of photoinduced anisotropy observed in PMMA films. J. Photochem. Photobiol., A 2000, 134, 185–191. 10.1016/S1010-6030(00)00268-9. DOI
Spanget-Larsen J.; Andersen K. B. On the molecular and vibrational structure of 1,6,6aλ4-trithiapentalenes. Analysis of the “bell-clapper” asymmetrical S-S-S stretching mode. Phys. Chem. Chem. Phys. 2001, 3, 908–916. 10.1039/b009728o. DOI
Hansen B. K. V.; Winther M.; Spanget-Larsen J. Intramolecular hydrogen bonding. Spectroscopic and theoretical studies of vibrational transitions in dibenzoylmethane enol. J. Mol. Struct. 2006, 790, 74–79. 10.1016/j.molstruc.2005.10.051. DOI
Nguyen H. T.; Nguyen D. D.; Spanget-Larsen J. Ionic reaction products of iodine with pyridine, 4-methylpyridine, and 4-tert-butylpyridine in a polyethylene matrix. A FTIR polarization spectroscopic investigation. Chem. Phys. Lett. 2019, 716, 119–125. 10.1016/j.cplett.2018.12.010. DOI
Andersen K. B.; Li S.; Lundquist K.; Ugalde M.; Román P.; Lezama L.; Rojo T. Infrared linear dichroism on 1,5-diphenyl-1,3,5-pentanetrione aligned in stretched polyethylene. Acta Chem. Scand. 1998, 52, 1171–1176. 10.3891/acta.chem.scand.52-1171. DOI
Thormann T.; Rogojerov M.; Jordanov B.; Thulstrup E. W. Vibrational polarization spectroscopy of fluorene: alignment in stretched polymers and nematic liquid crystals. J. Mol. Struct. 1999, 509, 93–104. 10.1016/S0022-2860(99)00213-6. DOI
Ivanova B. B.; Arnaudov M. G. Solid state linear-dichroic infrared spectral and theoretical analysis of methionine-containing tripeptides. Spectrochim. Acta, Part A 2006, 65, 56–61. 10.1016/j.saa.2005.09.026. PubMed DOI
Ivanova B. B.; Simeonov V. D.; Arnaudov M. G.; Tsalev D. L. Linear-dichroic infrared spectroscopy - validation and experimental design of the new orientation technique of solid samples as suspension in nematic liquid crystal. Spectrochim. Acta, Part A 2007, 67, 66–75. 10.1016/j.saa.2006.06.025. PubMed DOI
Noda I.; Dowrey A. E.; Marcott C. A spectrometer for measuring time-resolved infrared linear dichroism induced by a small-amplitude oscillatory strain. Appl. Spectrosc. 1988, 42, 203–216. 10.1366/0003702884428310. DOI
Noda I.; Dowrey A. E.; Marcott C.; Story G. M.; Ozaki Y. Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc. 2000, 54, 236A–248A. 10.1366/0003702001950454. DOI
Buffeteau T.; Desbat B.; Turlet J. M. Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis. Appl. Spectrosc. 1991, 45, 380–389. 10.1366/0003702914337308. DOI
Steiner G.; Möller H.; Savchuk O.; Ferse D.; Adler H. J.; Salzer R. Characterisation of ultra-thin polymer films by polarisation modulation FTIR spectroscopy. J. Mol. Struct. 2001, 563–564, 273–277. 10.1016/S0022-2860(01)00438-0. DOI
Spanget-Larsen J.; Christensen D. H.; Thulstrup E. W. Symmetry assignments of vibrations in 9,10-anthraquinone aligned in stretched polyethylene. Spectrochim. Acta, Part A 1987, 43, 331–335. 10.1016/0584-8539(87)80113-7. DOI
Thulstrup E. W.; Michl J.; Eggers J. H. Polarization spectra in stretched polymer sheets. II. Separation of .pi.-.pi.* absorption of symmetrical molecules into components. J. Phys. Chem. 1970, 74, 3868–3878. 10.1021/j100716a005. DOI
Wormell P.; Lacey A. R. Electronic spectra of the naphthyridines: 1,8-naphthyridine. Chem. Phys. 1987, 118, 71–89. 10.1016/0301-0104(87)85037-1. DOI
Davidsson Å.; Nordén B. New details in the polarized spectrum of naphthalene by means of linear dichroism studies in oriented polymer matrices. Chem. Phys. Lett. 1974, 28, 221–224. 10.1016/0009-2614(74)80057-6. DOI
Prelipceanu M.; Prelipceanu O.-S.; Tudose O.-G.; Grytsenko K.; Schrader S.. Oriented growth of pentacene films on vacuum-deposited polytetrafluoroethylene layers aligned by rubbing technique. 2007, arXiv preprint arXiv:0704.0538.
Vallée R.; Damman P.; Dosière M.; Scalmani G.; Brédas J. L. A joint experimental and theoretical study of the infrared spectra of 2-methyl-4-nitroaniline crystals oriented on nanostructured poly(tetrafluoroethylene) substrates. J. Phys. Chem. B 2001, 105, 6064–6069. 10.1021/jp003440l. DOI
Hiratsuka H.; Sekiguchi K.; Hatano Y.; Tanizaki Y.; Mori Y. Polarized absorption spectra of radical ions of some azanaphthalenes and biphenyls in stretched polymer films. Can. J. Chem. 1987, 65, 1185–1189. 10.1139/v87-198. DOI
Rodger A.; Sanders K. J.; Hannon M. J.; Meistermann I.; Parkinson A.; Vidler D. S.; Haworth I. S. DNA structure control by polycationic species: Polyamine, cobalt ammines, and di-metallo transition metal chelates. Chirality 2000, 12, 221–236. 10.1002/(SICI)1520-636X(2000)12:4<221::AID-CHIR9>3.0.CO;2-3. PubMed DOI
Razmkhah K.; Chmel N. P.; Gibson M. I.; Rodger A. Oxidized polyethylene films for orienting polar molecules for linear dichroism spectroscopy. Analyst 2014, 139, 1372–1382. 10.1039/C3AN02322B. PubMed DOI
Murphy-Benenato K. E.; Olivier N.; Choy A.; Ross P. L.; Miller M. D.; Thresher J.; Gao N.; Hale M. R. Synthesis, structure, and SAR of tetrahydropyran-based LpxC inhibitors. Med. Chem. Lett. 2014, 5 (11), 1213–1218. 10.1021/ml500210x. PubMed DOI PMC
Yamaguchi Y.; Ochi T.; Matsubara Y.; Yoshida Z. Highly emissive whole rainbow fluorophores consisting of 1,4-bis(2-phenylethynyl)benzene core skeleton: design, synthesis, and light-emitting characteristics. J. Phys. Chem. A 2015, 119 (32), 8630–8642. 10.1021/acs.jpca.5b05077. PubMed DOI
Smith J.; Arnolds H. Polytetrafluoroethylene tape as a low-cost hydrophobic substrate for drop-coating deposition Raman spectroscopy of proteins. J. Raman Spectrosc. 2018, 49, 1236–1239. 10.1002/jrs.5371. DOI
Ovaska M.; Kivinen A. Polarized infrared spectra: Part 3. The use of perdeuterated polyethylene film. The spectrum of nitrobenzene. J. Mol. Struct. 1983, 101, 255–262. 10.1016/0022-2860(83)85019-4. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H., et al.Gaussian 16, Revision A.03; Gaussian, Inc., 2016.
Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
von Arx T.; Szentkuti A.; Zehnder T. N.; Blacque O.; Venkatesan K. Stable N-heterocyclic carbene (NHC) cyclometalated (ĈC) gold(iii) complexes as blue–blue green phosphorescence emitters. J. Mater. Chem. C 2017, 5, 3765–3769. 10.1039/C6TC05551F. DOI
Javaid R.; Sayyadi N.; Mylvaganam K.; Venkatesan K.; Wang Y.; Rodger A. Design and synthesis of boron complexes as new Raman reporter molecules for sensitive SERS nanotags. J. Raman Spectrosc. 2020, 51 (12), 2408–2415. 10.1002/jrs.6020. DOI
Farrington P. J.; Hill D. J. T.; O’Donnell J. H.; Pomery P. J. Suppression of interference fringes in the infrared spectra of thin polymer films. Appl. Spectrosc. 1990, 44, 901–903. 10.1366/0003702904087163. DOI
Okabayashi H.; Okuyama M.; Kitagawa T.; Miyazawa T. The Raman Spectra and Molecular Conformations of Surfactants in Aqueous Solution and Crystalline States. Bull. Chem. Soc. Jpn. 1974, 47, 1075–1077. 10.1246/bcsj.47.1075. DOI
Kowalska P.; Cheeseman J. R.; Razmkhah K.; Green B.; Nafie L. A.; Rodger A. Experimental and Theoretical Polarized Raman Linear Difference Spectroscopy of Small Molecules with a New Alignment Method Using Stretched Polyethylene Film. Anal. Chem. 2012, 84, 1394–1401. 10.1021/ac202432e. PubMed DOI
Miljković M.; Bird B.; Diem M. Line shape distortion effects in infrared spectroscopy. Analyst 2012, 137, 3954–3964. 10.1039/c2an35582e. PubMed DOI
Schofield A. J.; Blümel R.; Kohler A.; Lukacs R.; Hirschmugl C. J. Extracting pure absorbance spectra in infrared microspectroscopy by modeling absorption bands as Fano resonances. J. Chem. Phys. 2019, 150, 154124.10.1063/1.5085207. PubMed DOI
Oberg K. A.; Palleros D. R. Teflon tape as a sample support for IR spectroscopy. J. Chem. Educ. 1995, 72, 857–861. 10.1021/ed072p857. DOI