Assessment of molybdenum application on soybean physiological characteristics in maize-soybean intercropping

. 2023 ; 14 () : 1240146. [epub] 20230929

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37841600

Soybean is a leguminous crop known for its efficient nitrogen utilization and ease of cultivation. However, its intercropping with maize may lead to severe reduction in its growth and yield due to shading effect of maize. This issue can be resolved by the appropriate application of essential plant nutrient such as molybdenum (Mo). Aim of this study was to assess the effect of Mo application on the morphological and physiological characteristics of soybean intercropped with maize. A two-year field experiment was conducted for this purpose, and Mo was applied in the form of sodium molybdate (Na2MoO4), and four different levels were maintained i.e., 0, 60, 120 and 180 g ha-1. Soybean exhibited varying responses to different levels of molybdenum (Mo) application. Notably, in both sole and intercropped cropping systems, the application of Mo at a rate of 120 g ha-1 demonstrated the highest level of promise compared to other application levels. However, most significant outcomes were pragmatic in soybean-maize intercropping, as application of Mo @ 120 g ha-1 significantly improved soybean growth and yield attributes, including leaf area index (LAI; 434 and 441%), total plant biomass (430 and 461%), transpiration rate (15 and 18%), stomatal conductance (9 and 11%), and yield (15 and 20%) during year 2020 and 2021 respectively, as compared to control treatment. Similarly, Mo @ 120 g ha-1 application resulted in highest total grain yield (626.0 and 725.3 kg ha-1) during 2020 and 2021 respectively, which exceeded the grain yields of other Mo levels under intercropping. Moreover, under Mo application level (120 g ha-1), grain NPK and Mo contents during years 2020 and 2021 were found to be 1.15, 0.22, 0.83 and 68.94 mg kg-1, and 1.27, 0.25, 0.90 and 72.18 mg kg-1 under intercropping system increased the value as compared to control treatment. Findings of current study highlighted the significance of Mo in enhancing soybean growth, yield, and nutrient uptake efficiency in maize-soybean intercropping systems.

Zobrazit více v PubMed

Abendroth L. J., Woli K. P., Myers A. J. W., Elmore R. W. (2017). Yield-based corn planting date recommendation windows for Iowa. Crop Forage Turfgrass Manage. 3, 1–7. doi: 10.2134/cftm2017.02.0015 DOI

Adkine P. M., Mankar D. D., Khandait V. M., Bhandare V. L., Nawlakhe S. M. (2011). Effect of boron, molybdenum and potassium nitrate on growth, yield and economics of soybean. J. Soils Crop 21, 116–123.

Ali M. M., Li B., Zhi C., Yousef A. F., Chen F. (2021). Foliar-supplied molybdenum improves phyto-nutritional composition of leaves and fruits of loquat (Eriobotrya japonica Lindl.). Agronomy 11, 892. doi: 10.3390/agronomy11050892 DOI

Bedoussac L., Journet E.-P., Hauggaard-Nielsen H., Naudin C., Corre-Hellou G., Jensen E. S., et al. (2015). Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 35, 911–935. doi: 10.1007/s13593-014-0277-7 DOI

Bittner F. (2014). Molybdenum metabolism in plants and crosstalk to iron. Front. Plant Sci. 5, 28. doi: 10.3389/fpls.2014.00028 PubMed DOI PMC

Bouyoucos G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agron. J. 54, 464–465. doi: 10.2134/agronj1962.00021962005400050028x DOI

Brown J. K. M. (2002). Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5, 339–344. doi: 10.1016/S1369-5266(02)00270-4 PubMed DOI

Cakmak I., Brown P., Colmenero-Flores J. M., Husted S., Kutman B. Y., Nikolic M., et al. (2023). Chapter 7-Micronutrients. In In Marschner’s Mineral Nutrition of Plants (4th Edition) (Academic Press; ), 283–385. doi:  10.1016/B978-0-12-819773-8.00017-4 DOI

Campo R. J., Araujo R. S., Hungria M. (2009). Molybdenum-enriched soybean seeds enhance N accumulation, seed yield, and seed protein content in Brazil. F. Crop Res. 110, 219–224. doi: 10.1016/j.fcr.2008.09.001 DOI

de la Fuente E. B., Suárez S. A., Lenardis A. E., Poggio S. L. (2014). Intercropping sunflower and soybean in intensive farming systems: evaluating yield advantage and effect on weed and insect assemblages. NJAS-Wageningen J. Life Sci. 70, 47–52. doi: 10.1016/j.njas.2014.05.002 DOI

Faostat F. (2019) Food and agriculture organization of the united nations-statistic division. Available at: https://www.fao.org/faostat/en/#data.

Fischer J., Böhm H., Heβ J. (2020). Maize-bean intercropping yields in Northern Germany are comparable to those of pure silage maize. Eur. J. Agron. 112, 125947. doi: 10.1016/j.eja.2019.125947 DOI

Gao Y., Duan A., Qiu X., Sun J., Zhang J., Liu H., et al. (2010). Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agron. J. 102, 1149–1157. doi: 10.2134/agronj2009.0409 DOI

Gao Y., Wu P., Zhao X., Wang Z. (2014). Growth, yield, and nitrogen use in the wheat/maize intercropping system in an arid region of northwestern China. F. Crop Res. 167, 19–30. doi: 10.1016/j.fcr.2014.07.003 DOI

Heshmat K., Asgari Lajayer B., Shakiba M. R., Astatkie T. (2021). Assessment of physiological traits of common bean cultivars in response to water stress and molybdenum levels. J. Plant Nutr. 44, 366–372. doi: 10.1080/01904167.2020.1822395 DOI

Hong F., Zhou J., Liu C., Yang F., Wu C., Zheng L., et al. (2005). Effect of nano-TiO 2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 105, 269–279. doi: 10.1385/BTER:105:1-3:269 PubMed DOI

Horváth B., Opara-Nadi O., Beese F. (2005). A simple method for measuring the carbonate content of soils. Soil Sci. Soc Am. J. 69, 1066–1068. doi: 10.2136/sssaj2004.0010 DOI

Hou J., Stacey G., Cheng J. (2015). Exploring soybean metabolic pathways based on probabilistic graphical model and knowledge-based methods. EURASIP J. Bioinforma. Syst. Biol. 2015, 1–13. doi: 10.1186/s13637-015-0026-5 PubMed DOI PMC

Htwe A. Z., Moh S. M., Soe K. M., Moe K., Yamakawa T. (2019). Effects of biofertilizer produced from Bradyrhizobium and Streptomyces griseoflavus on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of mung bean, cowpea, and soybean. Agronomy 9, 77. doi: 10.3390/agronomy9020077 DOI

Hu F., Gan Y., Chai Q., Feng F., Zhao C., Yu A., et al. (2016). Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping. F. Crop Res. 198, 50–60. doi: 10.1016/j.fcr.2016.08.022 DOI

Huss C. P., Holmes K. D., Blubaugh C. K. (2022). Benefits and risks of intercropping for crop resilience and pest management. J. Econ. Entomol. 115, 1350–1362. doi: 10.1093/jee/toac045 PubMed DOI

Hussain S., Shafiq I., Chattha M. S., Mumtaz M., Brestic M., Rastogi A., et al. (2021). Effect of Ti treatments on growth, photosynthesis, phosphorus uptake and yield of soybean (Glycine max L.) in maize-soybean relay strip intercropping. Environ. Exp. Bot. 187, 104476. doi:  10.1016/j.envexpbot.2021.104476 DOI

Iqbal N., Hussain S., Ahmed Z., Yang F., Wang X., Liu W., et al. (2019). Comparative analysis of maize–soybean strip intercropping systems: A review. Plant Prod. Sci. 22, 131–142. doi: 10.1080/1343943X.2018.1541137 DOI

Jahan M. S., Zhao C. J., Shi L. B., Liang X. R., Jabborova D., Nasar J., et al. (2023). Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1193666 PubMed DOI PMC

Jia W., Ma M., Chen J., Wu S. (2021). Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. Int. J. Mol. Sci. 22 (3), 1088. doi:  10.3390/ijms22031088 PubMed DOI PMC

Jiren T. S., Leventon J., Jager N. W., Dorresteijn I., Schultner J., Senbeta F., et al. (2021). Governance challenges at the interface of food security and biodiversity conservation: a multi-level case study from Ethiopia. Environ. Manage. 67, 717–730. doi: 10.1007/s00267-021-01432-7 PubMed DOI PMC

Joglekar P., Ferrell B. D., Jarvis T., Haramoto K., Place N., Dums J. T., et al. (2023). Spontaneously produced lysogenic phages are an important component of the soybean Bradyrhizobium mobilome. MBio 14, e00295–e00223. doi: 10.1128/mbio.00295-23 PubMed DOI PMC

Kadlag A. D., Patil J. C., Kasture M. C., Jagdhani A. D. (2006). Effect of molybdenum on yield and quality of soybean. Ann. Plant Physiol. 20, 281.

Kaiser B. N., Gridley K. L., Ngaire Brady J., Phillips T., Tyerman S. D. (2005). The role of molybdenum in agricultural plant production. Ann. Bot. 96, 745–754. doi: 10.1093/aob/mci226 PubMed DOI PMC

Kalimuthu P., Harmer J. R., Baldauf M., Hassan A. H., Kruse T., Bernhardt P. V. (2022). Electrochemically driven catalysis of the bacterial molybdenum enzyme YiiM. Biochim. Biophys. Acta (BBA)-Bioenergetics 1863, 148523. doi: 10.1016/j.bbabio.2021.148523 PubMed DOI

Kalugina Z. I. (2014). Agricultural policy in Russia: Global challenges and the viability of rural communities. Int. J. Sociol. Agric. Food 21, 115–131. doi:  10.48416/ijsaf.v21i1.158 DOI

Laltlanmawia L., Singh A. K., Sharma S. K. (2004). Effect of phosphorus and molybdenum on yield, protein content and nutrient uptake by soybean on acid soils of Nagaland. J. Indian Soc Soil Sci. 52, 199–202.

Li Y., Jin Q., Yang D., Cui J. (2018). Molybdenum sulfide induce growth enhancement effect of rice (Oryza sativa L.) through regulating the synthesis of chlorophyll and the expression of aquaporin gene. J. Agric. Food Chem. 66 (16), 4013–4021. doi:  10.1021/acs.jafc.7b05940 PubMed DOI

Li T., Liu L.-N., Jiang C.-D., Liu Y.-J., Shi L. (2014). Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. J. Photochem. Photobiol. B Biol. 137, 31–38. doi: 10.1016/j.jphotobiol.2014.04.022 PubMed DOI

Liu X., Rahman T., Song C., Yang F., Su B., Cui L., et al. (2018). Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. F. Crop Res. 224, 91–101. doi: 10.1016/j.fcr.2018.05.010 DOI

Liu W., Zou J., Zhang J., Yang F., Wan Y., Yang W. (2015). Evaluation of soybean (Glycine max) stem vining in maize-soybean relay strip intercropping system. Plant Prod. Sci. 18, 69–75. doi: 10.1626/pps.18.69 DOI

Lv J., Christie P., Zhang S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ. Sci. Nano 6, 41–59. doi: 10.1039/C8EN00645H DOI

Mahilane C., Singh V. (2018). Effect of zinc and molybdenum on growth, yield attributes, yield and protein in grain on summer blackgram (Vigna mungo L.). Int. J. Curr. Microbiol. Appl. Sci. 7, 1156–1162. doi: 10.20546/ijcmas.2018.701.140 DOI

Mao L., Zhang L., Li W., van der Werf W., Sun J., Spiertz H., et al. (2012). Yield advantage and water saving in maize/pea intercrop. F. Crop Res. 138, 11–20. doi: 10.1016/j.fcr.2012.09.019 DOI

Mendel R. R. (2013). The molybdenum cofactor. J. Biol. Chem. 288, 13165–13172. doi: 10.1074/jbc.R113.455311 PubMed DOI PMC

Mirriam A., Mugwe J., Raza M. A., Seleiman M. F., Maitra S., Gitari H. H. (2022). Aggrandizing soybean yield, phosphorus use efficiency and economic returns under phosphatic fertilizer application and inoculation with Bradyrhizobium. J. Soil Sci. Plant Nutr. 22 (4), 5086–5098. doi: 10.1007/s42729-022-00985-8 DOI

Mucheru-Muna M., Pypers P., Mugendi D., Kung’u J., Mugwe J., Merckx R., et al. (2010). A staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. F. Crop Res. 115, 132–139. doi: 10.1016/j.fcr.2009.10.013 DOI

Nasar J., Wang G.-Y., Ahmad S., Muhammad I., Zeeshan M., Gitari H., et al. (2022. a). Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. Front. Plant Sci. 13, 988055. doi: 10.3389/fpls.2022.988055 PubMed DOI PMC

Nasar J., Wang G. Y., Zhou F. J., Gitari H., Zhou X. B., Tabl K. M., et al. (2022. b). Nitrogen fertilization coupled with foliar application of iron and molybdenum improves shade tolerance of soybean under maize-soybean intercropping. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1014640 PubMed DOI PMC

Oliveira S. L., Crusciol C. A. C., Rodrigues V. A., Galeriani T. M., Portugal J. R., Bossolani J. W., et al. (2022). Molybdenum foliar fertilization improves photosynthetic metabolism and grain yields of field-grown soybean and maize. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.887682 PubMed DOI PMC

Olsen S. R., Sommers L. E. (1982). “Phosphorus,” in Methods of soil analysis, 2nd edn. Eds. Page A. L., Miller R. H., Keeney D. R. (Soil Sci. Soc. Am. Madison, WI, USA; ), 403–430.

Probst C., Yang J., Krausze J., Hercher T. W., Richers C. P., Spatzal T., et al. (2021). Mechanism of molybdate insertion into pterin-based molybdenum cofactors. Nat. Chem. 13, 758–765. doi: 10.1038/s41557-021-00714-1 PubMed DOI PMC

Qasim M., Ju J., Zhao H., Bhatti S. M., Saleem G., Memon S. P., et al. (2023). Morphological and physiological response of tomato to sole and combined application of vermicompost and chemical fertilizers. Agronomy 13, 1508. doi: 10.3390/agronomy13061508 DOI

Qin S., Hu C., Tan Q., Sun X. (2017). Effect of molybdenum levels on photosynthetic characteristics, yield and seed quality of two oilseed rape (Brassica napus L.) cultivars. Soil Sci. Plant Nutr. 63, 137–144. doi: 10.1080/00380768.2017.1286232 DOI

Quddus M. A., Anwar M. B., Naser H. M., Siddiky M. A., Hussain M. J., Aktar S., et al. (2020). Impact of zinc, boron and molybdenum addition in soil on mungbean productivity, nutrient uptake and economics. J. Agric. Sci. 12, 115–129. doi: 10.5539/jas.v12n9p115 DOI

Rana M., Bhantana P., Sun X. C., Imran M., Shaaban M., Moussa M., et al. (2020). Molybdenum as an essential element for crops: an overview. Int. J. Sci. Res. Growth 24, 18535.

Raut S. S., Chore C. N., Deotale R. D., Waghmare H. U., Hatmode C. N., Yenprediwar M. D. (2004). Response of seed dressing with biofertilizers and nutrient on chemical, biochemical, yield and yield contributing parameters of soybean. J. Soils Crop 14, 66–70.

Raven J. A. (1988). The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109, 279–287. doi: 10.1111/j.1469-8137.1988.tb04196.x DOI

Raza A., Asghar M. A., Ahmad B., Bin C., Iftikhar Hussain M., Li W., et al. (2020. a). Agro-techniques for lodging stress management in maize-soybean intercropping system—a review. Plants 9, 1592. doi: 10.3390/plants9111592 PubMed DOI PMC

Raza M. A., Cui L., Qin R., Yang F., Yang W. (2020. b). Strip-width determines competitive strengths and grain yields of intercrop species in relay intercropping system. Sci. Rep. 10, 1–12. doi: 10.1038/s41598-020-78719-y PubMed DOI PMC

Raza M. A., Feng L. Y., van der Werf W., Iqbal N., Khan I., Hassan M. J., et al. (2019). Optimum leaf defoliation: A new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. F. Crop Res. 244, 107647. doi: 10.1016/j.fcr.2019.107647 DOI

Raza M. A., Gul H., Wang J., Yasin H. S., Qin R., Bin Khalid M. H., et al. (2021). Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan. J. Clean. Prod. 308, 127282. doi: 10.1016/j.jclepro.2021.127282 DOI

Ren Y. Y., Wang X. L., Zhang S. Q., Palta J. A., Chen Y. L. (2017). Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency. Plant Soil 415, 131–144. doi: 10.1007/s11104-016-3143-3 DOI

Rhoades J. D. (1983). Soluble salts. Methods soil anal. Part 2 Chem. Microbiol. Prop. 9, 167–179. doi:  10.2134/agronmonogr9.2.2ed.c10 DOI

Sunita S., Sontakey P. Y., Beena N., Prema M., Deotale R. D. (2000). Influence of seed inoculation with Rhizobium and molybdenum on soyabean roots. J. Soils Crop 10, 128–130.

Teng Y., Zhao C., Chai Q., Hu F., Feng F. (2016). Effects of postponing nitrogen topdressing on water use characteristics of maize-pea intercropping system. Acta Agron. Sin. 42, 446–455. doi: 10.3724/SP.J.1006.2016.00446 DOI

Tiwari A. K., Prakash V., Ahmad A., Singh R. P. (2018). Effect of biofertilizers and micronutrients on nutrient uptake, growth, yield and yield attributes of lentil (Lens culinaris L.). Int. J. Curr. Microbiol. Appl. Sci. 7, 3269–3275. doi: 10.20546/ijcmas.2018.702.392 DOI

U.S. Salinity Laboratory Staff . (1954). Diagnosis and improvement of saline and alkali soils. USDA Hdbk 60, 160.

Walkley A., Black I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38. doi: 10.1097/00010694-193401000-00003 DOI

Wang G. Y., Ahmad S., Wang Y., Wang B. W., Huang J. H., Jahan M. S., et al. (2023). Multivariate analysis compares and evaluates drought and flooding tolerances of maize germplasm. Plant Physiol. 193 (1), 339–355. doi: 10.1093/plphys/kiad317 PubMed DOI

Wang Q., Ebbs S. D., Chen Y., Ma X. (2013). Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5, 753–759. doi: 10.1039/c3mt00033h PubMed DOI

Weisany W., Raei Y., Pertot I. (2015). Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Ind. Crops Prod. 77, 295–306. doi: 10.1016/j.indcrop.2015.09.003 DOI

Wolff X. Y., Coltman R. R. (1990). Productivity under shade in Hawaii of five crops grown as vegetables in the tropics. J. Am. Soc Hortic. Sci. 115, 175–181. doi: 10.21273/JASHS.115.1.175 DOI

Wu Y., Gong W., Yang W. (2017). Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci. Rep. 7, 9259. doi: 10.1038/s41598-017-10026-5 PubMed DOI PMC

Xia H.-Y., Wang Z.-G., Zhao J.-H., Sun J.-H., Bao X.-G., Christie P., et al. (2013). Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. F. Crop Res. 154, 53–64. doi: 10.1016/j.fcr.2013.07.011 DOI

Yang J., Song Z., Ma J., Han H. (2020). Toxicity of molybdenum-based nanomaterials on the soybean–rhizobia symbiotic system: implications for nutrition. ACS Appl. Nano Mater. 3, 5773–5782. doi: 10.1021/acsanm.0c00943 DOI

Zeeshan M., Hu Y. X., Guo X. H., Sun C. Y., Salam A., Ahmad S., et al. (2023). Physiological and transcriptomic study reveal SeNPs-mediated AsIII stress detoxification mechanisms involved modulation of antioxidants, metal transporters, and transcription factors in Glycine max L.(Merr.) roots. Environ. pollut. 317, 120637. doi: 10.1016/j.envpol.2022.120637 PubMed DOI

Zhang W.-P., Liu G.-C., Sun J.-H., Zhang L.-Z., Weiner J., Li L. (2015). Growth trajectories and interspecific competitive dynamics in wheat/maize and barley/maize intercropping. Plant Soil 397, 227–238. doi: 10.1007/s11104-015-2619-x DOI

Zhang G., Yang H., Zhang W., Bezemer T. M., Liang W., Li Q., et al. (2023). Interspecific interactions between crops influence soil functional groups and networks in a maize/soybean intercropping system. Agr. Ecosyst. Environ. 355, 108595. doi:  10.1016/j.agee.2023.108595 DOI

Zhao X., Dong Q., Han Y., Zhang K., Shi X., Yang X., et al. (2022). Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiol. 22, 14. doi: 10.1186/s12866-021-02425-6 PubMed DOI PMC

Zuber M. S., Kang M. S. (1978). Corn lodging slowed by sturdier stalks. Crop Soils.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...