The Behavior of Terbuthylazine, Tebuconazole, and Alachlor during Denitrification Process
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FAST-J-22-7911
Brno University of Technology
LM2018121
Research Infrastructure RECETOX
857560
European Union's Horizon 2020
CZ.02.1.01/0.0/0.0/17_043/0009632
Ministry of Education, Youth and Sports, and Operational Programmer Research, Development, and Innovation
PubMed
37873813
PubMed Central
PMC10594447
DOI
10.3390/jox13040036
PII: jox13040036
Knihovny.cz E-zdroje
- Klíčová slova
- alachlor, inhibition, laboratory denitrification assay, tebuconazole, terbuthylazine,
- Publikační typ
- časopisecké články MeSH
Pesticide compounds can influence denitrification processes in groundwater in many ways. This study observed behavior of three selected pesticides under denitrifying conditions. Alachlor, terbuthylazine, and tebuconazole, in a concentration of 0.1 mL L-1, were examined using two laboratory denitrifications assays: a "short" 7-day and a "long" 28-day test. During these tests, removal of pesticides via adsorption and biotic decomposition, as well as the efficiency of nitrate removal in the presence of the pesticides, were measured. No considerable inhibition of the denitrification process was observed for any of the pesticides. On the contrary, significant stimulation was observed after 21 days for alachlor (49%) and after seven days for terbuthylazine (40%) and tebuconazole (36%). Adsorption was in progress only during the first seven days in the case of all tested pesticides and increased only negligibly afterwards. Immediate adsorption of terbuthylazine was probably influenced by the mercuric chloride inhibitor. A biotic loss of 4% was measured only in the case of alachlor.
Zobrazit více v PubMed
FAO (Food and Agriculture Organization of the United Nations) Pesticides Use. 2022. [(accessed on 27 August 2023)]. Available online: http://www.fao.org/faostat/en/#data/RP/visualize.
European Commission Active Substances, Safeners and Synergists. 2023. [(accessed on 27 August 2023)]. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances.
de Souza R.M., Seibert D., Quesada H.B., de Jesus Bassetti F., Fagundes-Klen M.R., Bergamasco R. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Saf. Environ. Prot. 2020;135:22–37. doi: 10.1016/j.psep.2019.12.035. DOI
Pino N., Peñuela G. Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int. Biodeterior. Biodegrad. 2011;65:827–831. doi: 10.1016/j.ibiod.2011.06.001. DOI
Schulz R. Field Studies on Exposure, Effects, and Risk Mitigation of Aquatic Nonpoint-Source Insecticide Pollution: A Review. J. Environ. Qual. 2004;33:419–448. doi: 10.2134/jeq2004.4190. PubMed DOI
Caldas S.S., Demoliner A., Costa F.P., D’Oca M.G.M., Primel E.G. Pesticide residue determination in groundwater using solid-phase extraction and high-performance liquid chromatography with diode array detector and liquid chromatography-tandem mass spectrometry. J. Braz. Chem. Soc. 2010;21:642–650. doi: 10.1590/S0103-50532010000400009. DOI
Nasiri M., Ahmadzadeh H., Amiri A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. TrAC Trends Anal. Chem. 2020;123:115772. doi: 10.1016/j.trac.2019.115772. DOI
Barra Caracciolo A., Fajardo C., Grenni P., Saccà M.L., Amalfitano S., Ciccoli R., Martin M., Gibello A. The role of a groundwater bacterial community in the degradation of the herbicide terbuthylazine. FEMS Microbiol. Ecol. 2010;71:127–136. doi: 10.1111/j.1574-6941.2009.00787.x. PubMed DOI
Kodeš V. Problematika pesticidů v ochraně vod—Jaká data máme k dispozici a co nám říkají? In Proceedings of the Sborník Přednášek a Posterových Sdělení z 13; Bienální Konference a Výstavy VODA. Poděbrady; Czech Republic. 18–19 September 2019.
Moulisová A., Bendakovská L., Kožíšek F., Vavrouš A., Jeligová H., Kotal F. Pesticidy a jejich metabolity v pitné vodě. Vodn. Hospodářství Spec. Vědeckotechnický Časopis Pro Proj. Realiz. Plánování Vodn. Hospodářství Souvisejích Oborech Zivotn. Prostředí. 2018;68:4–10.
Fenner K., Canonica S., Wackett L.P., Elsner M. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities. Science. 2013;341:752–758. doi: 10.1126/science.1236281. PubMed DOI
Navarro S., Vela N., José Giménez M., Navarro G. Persistence of four s-triazine herbicides in river, sea and groundwater samples exposed to sunlight and darkness under laboratory conditions. Sci. Total Environ. 2004;329:87–97. doi: 10.1016/j.scitotenv.2004.03.013. PubMed DOI
Chen Z., Chen Y., Vymazal J., Kule L., Koželuh M. Dynamics of chloroacetanilide herbicides in various types of mesocosm wetlands. Sci. Total Environ. 2017;577:386–394. doi: 10.1016/j.scitotenv.2016.10.216. PubMed DOI
Howarth R.W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae. 2008;8:14–20. doi: 10.1016/j.hal.2008.08.015. DOI
Ju X.T., Zhang C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review. J. Integr. Agric. 2017;16:2848–2862. doi: 10.1016/S2095-3119(17)61743-X. DOI
WHO . Guidelines for Drinking-Water Quality. 3rd ed. WHO; Geneva, Switzerland: 2004.
Capodici M., Avona A., Laudicina V.A., Viviani G. Biological groundwater denitrification systems: Lab-scale trials aimed at nitrous oxide production and emission assessment. Sci. Total Environ. 2018;630:462–468. doi: 10.1016/j.scitotenv.2018.02.260. PubMed DOI
Hiscock K.M., Lloyd J.W., Lerner D.N. Review of natural and artificial denitrification of groundwater. Water Res. 1991;25:1099–1111. doi: 10.1016/0043-1354(91)90203-3. DOI
Michel C., Baran N., André L., Charron M., Joulian C. Side Effects of Pesticides and Metabolites in Groundwater: Impact on Denitrification. Front. Microbiol. 2021;12:662727. doi: 10.3389/fmicb.2021.662727. PubMed DOI PMC
Pániková K., Weigelhofer G., Bílková Z., Malá J. Denitrification Assays for Testing Effects of Xenobiotics on Aquatic Denitrification and Their Degradation in Aquatic Environments. Water. 2023;15:2536. doi: 10.3390/w15142536. DOI
Gikas G.D., Pérez-Villanueva M., Tsioras M., Alexoudis C., Pérez-Rojas G., Masís-Mora M., Lizano-Fallas V., Rodríguez-Rodríguez C.E., Vryzas Z., Tsihrintzis V.A. Low-cost approaches for the removal of terbuthylazine from agricultural wastewater: Constructed wetlands and biopurification system. Chem. Eng. J. 2018;335:647–656. doi: 10.1016/j.cej.2017.11.031. DOI
Elsayed O.F., Maillard E., Vuilleumier S., Millet M., Imfeld G. Degradation of chloroacetanilide herbicides and bacterial community composition in lab-scale wetlands. Sci. Total Environ. 2015;520:222–231. doi: 10.1016/j.scitotenv.2015.03.061. PubMed DOI
Colosio C., Rubino F.M., Moretto A. International Encyclopedia of Public Health. Elsevier; Amsterdam, The Netherlands: 2017. Pesticides; pp. 454–462. DOI
Cao D., Wu R., Dong S., Wang F., Ju C., Yu S., Xu S., Fang H., Yu Y. Triazole resistance in Aspergillus fumigatus in crop plant soil after tebuconazole applications. Environ. Pollut. 2020;266:115124. doi: 10.1016/j.envpol.2020.115124. PubMed DOI
European Food Safety Authority Conclusion regarding the peer review of the pesticide risk assessment of the active substance tebuconazole. [(accessed on 27 August 2023)];EFSA Sci. Rep. 2008 :4–6. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2008.176r. DOI
Herrero-Hernández E., Andrades M.S., Marín-Benito J.M., Sánchez-Martín M.J., Rodríguez-Cruz M.S. Field-scale dissipation of tebuconazole in a vineyard soil amended with spent mushroom substrate and its potential environmental impact. Ecotoxicol. Environ. Saf. 2011;74:1480–1488. doi: 10.1016/j.ecoenv.2011.04.023. PubMed DOI
Fresenius W., Quentin K., Schneider W. Water Analysis—A Practical Guide to Physico-Chemical. 1st ed. Springer-Verlag; Berlin Heidelberg, Germany: 1988. Chemical and Microbiological Water Examination and Quality Assurance.
Zhao J., He Q., Chen N., Peng T., Feng C. Denitrification behavior in a woodchip-packed bioreactor with gradient filling for nitrate-contaminated water treatment. Biochemical Engineering Journal. 2020;154 doi: 10.1016/j.bej.2019.107454. DOI
Paul E.A. Soil Microbiology, Ecology, and Biochemistry. 3rd ed. Elsevier Inc.; Oxford, UK: 2007.
Oh J., Silverstein J.A. Acetate Limitation and Nitrite Accumulation during Denitrification. J. Environ. Eng. 1999;125:234–242. doi: 10.1061/(ASCE)0733-9372(1999)125:3(234). DOI
Hu R., Zheng X., Zheng T., Xin J., Wang H., Sun Q. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification. J. Environ. Manag. 2019;246:832–839. doi: 10.1016/j.jenvman.2019.06.057. PubMed DOI
Qian W., Ma B., Li X., Zhang Q., Peng Y. Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification. Bioresour. Technol. 2019;278:444–449. doi: 10.1016/j.biortech.2019.01.105. PubMed DOI
Chung J., Bae W. Nitrite reduction by a mixed culture under conditions relevant to shortcut biological nitrogen removal. Biodegradation. 2002;13:163–170. doi: 10.1023/A:1020896412365. PubMed DOI
Lahdhiri A., Lesage G., Hannachi A., Heran M. Minimum COD needs for denitrification: From biological models to experimental set-up. Desalination Water Treat. 2017;61:326–334. doi: 10.5004/dwt.2017.11130. DOI
Novak P.J., Christ S.J., Parkin G.F. Kinetics of alachlor transformation and identification of metabolites under anaerobic conditions. Water Res. 1997;31:3107–3115. doi: 10.1016/S0043-1354(97)00151-6. DOI
Pozo C., Salmeron V., Rodelas B., Martinez-Toledo M.V., Gonzalez-Lopez J. Effects of the herbicide alachlor on soil microbial activities. Ecotoxicology. 1994;3:4–10. doi: 10.1007/BF00121384. PubMed DOI
Cycoń M., Piotrowska-Seget Z., Kaczyńska A., Kozdrój J. Microbiological characteristics of a sandy loam soil exposed to tebuconazole and λ-cyhalothrin under laboratory conditions. Ecotoxicology. 2006;15:639–646. doi: 10.1007/s10646-006-0099-8. PubMed DOI
Graham D.W., Miley M.K., deNoyelles F., Smith V.H., Thurman E.M., Carter R. Alachlor transformation patterns in aquatic field mesocosms under variable oxygen and nutrient conditions. Water Res. 2000;34:4054–4062. doi: 10.1016/S0043-1354(00)00147-0. DOI
Dehghani M., Nasseri S., Zamanian Z. Biodegradation of alachlor in liquid and soil cultures under variable carbon and nitrogen sources by bacterial consortium isolated from corn field soil. Iran. J. Environ. Health Sci. Eng. 2013;10:21. doi: 10.1186/1735-2746-10-21. PubMed DOI PMC
Čadková E., Komárek M., Kaliszová R., Vaněk A., Balíková M. Tebuconazole Sorption in Contrasting Soil Types. Soil Sediment Contam. Int. J. 2013;22:404–414. doi: 10.1080/15320383.2013.733448. DOI
Ilhan Z.E., Ong S.K., Moorman T.B. Dissipation of Atrazine, Enrofloxacin, and Sulfamethazine in Wood Chip Bioreactors and Impact on Denitrification. J. Environ. Qual. 2011;40:1816–1823. doi: 10.2134/jeq2011.0082. PubMed DOI
Krause Camilo B. Bioreactor reduces atrazine and nitrate in tile drain waters. Ecol. Eng. 2016;86:269–278. doi: 10.1016/j.ecoleng.2015.09.072. DOI
Ahmad K.S. Evaluating the Adsorption Potential of Alachlor and Its Subsequent Removal from Soils via Activated Carbon. Soil Sediment Contam. Int. J. 2018;27:249–266. doi: 10.1080/15320383.2018.1470604. DOI