Flecainide Is Associated With a Lower Incidence of Arrhythmic Events in a Large Cohort of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia

. 2023 Dec 19 ; 148 (25) : 2029-2037. [epub] 20231027

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu multicentrická studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37886885

BACKGROUND: In severely affected patients with catecholaminergic polymorphic ventricular tachycardia, beta-blockers are often insufficiently protective. The purpose of this study was to evaluate whether flecainide is associated with a lower incidence of arrhythmic events (AEs) when added to beta-blockers in a large cohort of patients with catecholaminergic polymorphic ventricular tachycardia. METHODS: From 2 international registries, this multicenter case cross-over study included patients with a clinical or genetic diagnosis of catecholaminergic polymorphic ventricular tachycardia in whom flecainide was added to beta-blocker therapy. The study period was defined as the period in which background therapy (ie, beta-blocker type [beta1-selective or nonselective]), left cardiac sympathetic denervation, and implantable cardioverter defibrillator treatment status, remained unchanged within individual patients and was divided into pre-flecainide and on-flecainide periods. The primary end point was AEs, defined as sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter defibrillator shock, and arrhythmic syncope. The association of flecainide with AE rates was assessed using a generalized linear mixed model assuming negative binomial distribution and random effects for patients. RESULTS: A total of 247 patients (123 [50%] females; median age at start of flecainide, 18 years [interquartile range, 14-29]; median flecainide dose, 2.2 mg/kg per day [interquartile range, 1.7-3.1]) were included. At baseline, all patients used a beta-blocker, 70 (28%) had an implantable cardioverter defibrillator, and 21 (9%) had a left cardiac sympathetic denervation. During a median pre-flecainide follow-up of 2.1 years (interquartile range, 0.4-7.2), 41 patients (17%) experienced 58 AEs (annual event rate, 5.6%). During a median on-flecainide follow-up of 2.9 years (interquartile range, 1.0-6.0), 23 patients (9%) experienced 38 AEs (annual event rate, 4.0%). There were significantly fewer AEs after initiation of flecainide (incidence rate ratio, 0.55 [95% CI, 0.38-0.83]; P=0.007). Among patients who were symptomatic before diagnosis or during the pre-flecainide period (n=167), flecainide was associated with significantly fewer AEs (incidence rate ratio, 0.49 [95% CI, 0.31-0.77]; P=0.002). Among patients with ≥1 AE on beta-blocker therapy (n=41), adding flecainide was also associated with significantly fewer AEs (incidence rate ratio, 0.25 [95% CI, 0.14-0.45]; P<0.001). CONCLUSIONS: For patients with catecholaminergic polymorphic ventricular tachycardia, adding flecainide to beta-blocker therapy was associated with a lower incidence of AEs in the overall cohort, in symptomatic patients, and particularly in patients with breakthrough AEs while on beta-blocker therapy.

Agnes Ginges Centre for Molecular Cardiology at Centenary Institute University of Sydney Australia

Amsterdam Cardiovascular Sciences Heart Failure and Arrhythmias The Netherlands

Cardiac Inherited Disease Group New Zealand Green Lane Paediatric and Congenital Cardiac Services Starship Children's Hospital Auckland

Cardiovascular Genetics Center Institut d'Investigació Biomèdica Girona Hospital Trueta CIBERCV University of Girona Spain

Center for Biomedical Network Research on Cardiovascular Diseases Madrid Spain

Children's Heart Centre 2nd Faculty of Medicine Charles University Prague and Motol University Hospital Czech Republic

Department of Cardiology Erasmus MC University Medical Center Rotterdam The Netherlands

Department of Cardiology Hospital Universitario y Politécnico La Fe Valencia Spain

Department of Cardiology Rigshospitalet Copenhagen Denmark

Department of Cardiology Royal Brompton Hospital London United Kingdom

Department of Cardiology University of Groningen University Medical Centre Groningen The Netherlands

Department of Cardiovascular Diseases University Hospitals Leuven Belgium

Department of Cardiovascular Medicine Shiga University of Medical Science Otsu Japan

Department of Medicine University Medical Center Mannheim Germany

Department of Paediatric Cardiology Vall d'Hebron University Hospital Barcelona Spain

Department of Paediatrics Hong Kong Children's Hospital China

Department of Pediatric Cardiology and Cardiac Surgery Bambino Gesù Children's Hospital and Research Institute Rome Italy

Department of Pediatric Cardiology and Intensive Care Medicine University Medical Center Göttingen Georg August University Germany

Department of Pediatric Cardiology Emma Children's Hospital Amsterdam UMC Location AMC University of Amsterdam The Netherlands

Department of Pediatric Cardiology Erasmus MC Sophia Rotterdam The Netherlands

Department of Pediatrics BC Children's Hospital University of British Columbia Vancouver Canada

Department of Pediatrics Monroe Carell Jr Children's Hospital at Vanderbilt Vanderbilt University Medical Centre Nashville TN

Department of Pediatrics University of Alberta Edmonton Canada

Department of Pediatrics University of California Irvine

Departments of Cardiovascular Medicine Pediatric and Adolescent Medicine and Molecular Pharmacology and Experimental Therapeutics Divisions of Heart Rhythm Services and Pediatric Cardiology Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory Mayo Clinic Rochester MN

Division of Cardiology Children's Mercy Hospital Kansas City MO

Division of Pediatric Cardiology Department of Pediatrics Norton Children's Hospital University of Louisville School of Medicine KY

Division of Pediatric Cardiology University of Utah Salt Lake City

Epidemiology and Data Science Amsterdam Public Health Methodology Amsterdam UMC Location AMC University of Amsterdam The Netherlands

European Reference Network for Rare Low Prevalence and Complex Diseases of the Heart ERN GUARD Heart

Heart and Lung Centre Helsinki University Hospital and Helsinki University Finland

Heart Centre Department of Cardiology Amsterdam UMC Location AMC University of Amsterdam The Netherlands

IWK Health Center Dalhousie University Halifax Canada

LIRYC Institute Bordeaux University Hospital Bordeaux University France

Medical Genome Center National Cerebral and Cardiovascular Center Suita Japan

ProCardio Center for Innovation Heart Vessel and Lung Clinic Oslo University Hospital Rikshospitalet Norway

Section of Cardiac Electrophysiology Division of Cardiology Department of Medicine Western University London Canada

Section of Genetics Department of Forensic Medicine Faculty of Medical Sciences University of Copenhagen Denmark

Service de Cardiologie et CRMR Maladies Cardiaques Héréditaires et Rares APHP Hôpital Bichat Université Paris Cité France

Sibley Heart Center Children's Healthcare of Atlanta GA

The Royal Children's Hospital Melbourne Australia

Unidad de Cardiopatías Familiares Muerte Súbita y Mecanismos de Enfermedad Instituto de Investigación Sanitaria La Fe Valencia Spain

Université de Nantes CHU Nantes CNRS INSERM L'institut du Thorax France

University of Alabama at Birmingham

University of Michigan Congenital Heart Center Ann Arbor

Zobrazit více v PubMed

Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children A 7-year follow-up of 21 patients. Circulation. 1995;91:1512–1519. doi: 10.1161/01.cir.91.5.1512 PubMed

Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, et al. ; ESC Scientific Document Group. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43:3997–4126. doi: 10.1093/eurheartj/ehac262 PubMed

Mazzanti A, Kukavica D, Trancuccio A, Memmi M, Bloise R, Gambelli P, Marino M, Ortíz-Genga M, Morini M, Monteforte N, et al. . Outcomes of patients with catecholaminergic polymorphic ventricular tachycardia treated with beta-blockers. JAMA Cardiol. 2022;7:504–512. doi: 10.1001/jamacardio.2022.0219 PubMed PMC

van der Werf C, Zwinderman AH, Wilde AA. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace. 2012;14:175–183. doi: 10.1093/europace/eur277 PubMed

Roston TM, Vinocur JM, Maginot KR, Mohammed S, Salerno JC, Etheridge SP, Cohen M, Hamilton RM, Pflaumer A, Kanter RJ, et al. . Catecholaminergic polymorphic ventricular tachycardia in children: analysis of therapeutic strategies and outcomes from an international multicenter registry. Circ Arrhythm Electrophysiol. 2015;8:633–642. doi: 10.1161/CIRCEP.114.002217 PubMed PMC

Kannankeril PJ, Moore JP, Cerrone M, Priori SG, Kertesz NJ, Ro PS, Batra AS, Kaufman ES, Fairbrother DL, Saarel EV, et al. . Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol. 2017;2:759–766. doi: 10.1001/jamacardio.2017.1320 PubMed PMC

van der Werf C, Kannankeril PJ, Sacher F, Krahn AD, Viskin S, Leenhardt A, Shimizu W, Sumitomo N, Fish FA, Bhuiyan ZA, et al. . Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011;57:2244–2254. doi: 10.1016/j.jacc.2011.01.026 PubMed PMC

Wangüemert Pérez F, Hernández Afonso JS, Groba Marco MDV, Caballero Dorta E, Álvarez Acosta L, Campuzano Larrea O, Pérez G, Brugada Terradellas J, Brugada Terradellas R. Flecainide reduces ventricular arrhythmias in patients with genotype RyR2-positive catecholaminergic polymorphic ventricular tachycardia. Rev Esp Cardiol (Engl Ed). 2018;71:185–191. doi: 10.1016/j.rec.2017.04.032 PubMed

Watanabe H, van der Werf C, Roses-Noguer F, Adler A, Sumitomo N, Veltmann C, Rosso R, Bhuiyan ZA, Bikker H, Kannankeril PJ, et al. . Effects of flecainide on exercise-induced ventricular arrhythmias and recurrences in genotype-negative patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2013;10:542–547. doi: 10.1016/j.hrthm.2012.12.035 PubMed PMC

Khoury A, Marai I, Suleiman M, Blich M, Lorber A, Gepstein L, Boulos M. Flecainide therapy suppresses exercise-induced ventricular arrhythmias in patients with CASQ2-associated catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2013;10:1671–1675. doi: 10.1016/j.hrthm.2013.08.011 PubMed

Giudicessi JR, Lieve KVV, Rohatgi RK, Koca F, Tester DJ, van der Werf C, Martijn Bos J, Wilde AAM, Ackerman MJ. Assessment and validation of a phenotype-enhanced variant classification framework to promote or demote RYR2 missense variants of uncertain significance. Circ Genom Precis Med. 2019;12:e002510. doi: 10.1161/CIRCGEN.119.002510 PubMed

Gray B, Bagnall RD, Lam L, Ingles J, Turner C, Haan E, Davis A, Yang P, Clancy CE, Sy RW, et al. . A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2016;13:1652–1660. doi: 10.1016/j.hrthm.2016.05.004 PubMed PMC

Ng K, Titus EW, Lieve KV, Roston TM, Mazzanti A, Deiter FH, Denjoy I, Ingles J, Till J, Robyns T, et al. . An international multicenter evaluation of inheritance patterns, arrhythmic risks, and underlying mechanisms of CASQ2-catecholaminergic polymorphic ventricular tachycardia. Circulation. 2020;142:932–947. doi: 10.1161/CIRCULATIONAHA.120.045723 PubMed PMC

Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC, Alders M, Postma AV, van Langen I, Mannens MM, Wilde AA. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation. 2007;116:1569–1576. doi: 10.1161/CIRCULATIONAHA.107.711606 PubMed

Ohno S, Omura M, Kawamura M, Kimura H, Itoh H, Makiyama T, Ushinohama H, Makita N, Horie M. Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction. Europace. 2014;16:1646–1654. doi: 10.1093/europace/eut382 PubMed

Sun B, Yao J, Ni M, Wei J, Zhong X, Guo W, Zhang L, Wang R, Belke D, Chen YX, et al. . Cardiac ryanodine receptor calcium release deficiency syndrome. Sci Transl Med. 2021;13:eaba7287. doi: 10.1126/scitranslmed.aba7287 PubMed

Roston TM, Wei J, Guo W, Li Y, Zhong X, Wang R, Estillore JP, Peltenburg PJ, Noguer FRI, Till J, et al. . Clinical and functional characterization of ryanodine receptor 2 variants implicated in calcium-release deficiency syndrome. JAMA Cardiol. 2022;7:84–92. doi: 10.1001/jamacardio.2021.4458 PubMed PMC

Peltenburg PJ, Kallas D, Bos JM, Lieve KVV, Franciosi S, Roston TM, Denjoy I, Sorensen KB, Ohno S, Roses-Noguer F, et al. . An international multicenter cohort study on beta-blockers for the treatment of symptomatic children with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2022;145:333–344. doi: 10.1161/CIRCULATIONAHA.121.056018 PubMed

van der Werf C, Lieve KV, Bos JM, Lane CM, Denjoy I, Roses-Noguer F, Aiba T, Wada Y, Ingles J, Leren IS, et al. . Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest. Eur Heart J. 2019;40:2953–2961. doi: 10.1093/eurheartj/ehz309 PubMed

Roston TM, Chua D, Lum E, Krahn AD. Switching between beta-blockers: an empiric tool for the cardiovascular practitioner. Can J Cardiol. 2019;35:539–543. doi: 10.1016/j.cjca.2019.01.013 PubMed

Watanabe H, Chopra N, Laver D, Hwang HS, Davies SS, Roach DE, Duff HJ, Roden DM, Wilde AA, Knollmann BC. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med. 2009;15:380–383. doi: 10.1038/nm.1942 PubMed PMC

Kallas D, Roston TM, Franciosi S, Brett L, Lieve KVV, Kwok S-Y, Kannankeril PJ, Krahn AD, LaPage MJ, Etheridge S, et al. . Evaluation of age at symptom onset, proband status, and sex as predictors of disease severity in pediatric catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2021;18:1825–1832. doi: 10.1016/j.hrthm.2021.07.061 PubMed

Hayashi M, Denjoy I, Extramiana F, Maltret A, Roux Buisson N, Lupoglazoff J-M, Klug D, Hayashi M, Takatsuki S, Villain E, et al. . Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009;119:2426–2434. doi: 10.1161/CIRCULATIONAHA.108.829267 PubMed

Bannister ML, MacLeod KT, George CH. Moving in the right direction: elucidating the mechanisms of interaction between flecainide and the cardiac ryanodine receptor. Br J Pharmacol. 2022;179:2558–2563. doi: 10.1111/bph.15718 PubMed

Mehra D, Imtiaz MS, van Helden DF, Knollmann BC, Laver DR. Multiple modes of ryanodine receptor 2 inhibition by flecainide. Mol Pharmacol. 2014;86:696–706. doi: 10.1124/mol.114.094623 PubMed PMC

Sikkel MB, Collins TP, Rowlands C, Shah M, O’Gara P, Williams AJ, Harding SE, Lyon AR, MacLeod KT. Flecainide reduces Ca(2+) spark and wave frequency via inhibition of the sarcolemmal sodium current. Cardiovasc Res. 2013;98:286–296. doi: 10.1093/cvr/cvt012 PubMed PMC

Liu N, Denegri M, Ruan Y, Avelino-Cruz JE, Perissi A, Negri S, Napolitano C, Coetzee WA, Boyden PA, Priori SG. Short communication: flecainide exerts an antiarrhythmic effect in a mouse model of catecholaminergic polymorphic ventricular tachycardia by increasing the threshold for triggered activity. Circ Res. 2011;109:291–295. doi: 10.1161/CIRCRESAHA.111.247338 PubMed

Bannister ML, Thomas NL, Sikkel MB, Mukherjee S, Maxwell C, MacLeod KT, George CH, Williams AJ. The mechanism of flecainide action in CPVT does not involve a direct effect on RyR2. Circ Res. 2015;116:1324–1335. doi: 10.1161/CIRCRESAHA.116.305347 PubMed

Bannister ML, Alvarez-Laviada A, Thomas NL, Mason SA, Coleman S, du Plessis CL, Moran AT, Neill-Hall D, Osman H, Bagley MC, et al. . Effect of flecainide derivatives on sarcoplasmic reticulum calcium release suggests a lack of direct action on the cardiac ryanodine receptor. Br J Pharmacol. 2016;173:2446–2459. doi: 10.1111/bph.13521 PubMed PMC

Sikkel MB, Collins TP, Rowlands C, Shah M, O’Gara P, Williams AJ, Harding SE, Lyon AR, MacLeod KT. Flecainide reduces Ca(2+) spark and wave frequency via inhibition of the sarcolemmal sodium current. Cardiovasc Res. 2013;98:286–296. doi: 10.1093/cvr/cvt012 PubMed PMC

Kryshtal DO, Blackwell DJ, Egly CL, Smith AN, Batiste SM, Johnston JN, Laver DR, Knollmann BC. RYR2 channel inhibition is the principal mechanism of flecainide action in CPVT. Circ Res. 2021;128:321–331. doi: 10.1161/CIRCRESAHA.120.316819 PubMed PMC

Savio-Galimberti E, Knollmann BC. Channel activity of cardiac ryanodine receptors (RyR2) determines potency and efficacy of flecainide and R-propafenone against arrhythmogenic calcium waves in ventricular cardiomyocytes. PLoS One. 2015;10:e0131179. doi: 10.1371/journal.pone.0131179 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...