Climate Change Dependence in Ex Situ Conservation of Wild Medicinal Plants in Crete, Greece
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37887037
PubMed Central
PMC10604457
DOI
10.3390/biology12101327
PII: biology12101327
Knihovny.cz E-zdroje
- Klíčová slova
- Crete, Ecological Niche Modeling, Lamiaceae, adaptation strategies, climate change, ex situ conservation, habitat shift, medicinal plants, precision agriculture, wild harvest,
- Publikační typ
- časopisecké články MeSH
Over 80% of the global population addresses their primary healthcare needs using traditional medicine based on medicinal plants. Consequently, there's a rising demand for these plants for both household and industrial use at local, regional, national, and international levels. However, wild harvesting has negatively impacted natural ecosystems. Cultivating medicinal species has been proposed as a conservation strategy to alleviate this pressure. Yet, in this age of global climate change concerns, smallholder farmers' views on the benefits of such cultivation clash with the uncertainties of climate change impacts, amplifying their anxieties. In this context, the climate change dependence of ex situ cultivation of ten wild medicinal taxa with significant ethnopharmacological interest in Crete, Greece, were studied, projecting their potential habitat suitability under various future climate scenarios. The results demonstrated species-specific effects. Based on the potential cultivation area gains and losses, these effects can be categorized into three groups. We also outlined the spatial patterns of these gains and losses, offering valuable insights for regional management strategies benefiting individual practitioners.
Botanical Garden University of Crete Gallos University Campus 741 00 Rethymnon Greece
Department of Biology University of Crete 714 09 Heraklion Greece
Department of Biology University of Pisa 56126 Pisa Italy
Department of Botany Palacký University Olomouc 783 71 Olomouc Czech Republic
Department of Life Sciences University of Siena 53100 Siena Italy
School of Biology Aristotle University of Thessaloniki 541 24 Thessaloniki Greece
School of Medicine University of Crete 714 09 Heraklion Greece
Zobrazit více v PubMed
World Health Organization Regional Office for South-East Asia. The Use of Herbal Medicines in Primary Health Care. WHO Regional Office for South-East Asia. 2009. [(accessed on 30 August 2023)]. Available online: https://iris.who.int/handle/10665/206476.
Jimoh M.A., Jimoh M.O., Saheed S.A., Bamigboye S.O., Laubscher C.P., Kambizi L. Commercialization of Medicinal Plants: Opportunities for Trade and Concerns for Biodiversity Conservation. Sustain. Uses Prospect. Med. Plants. 2023:309–332.
Barata A.M., Rocha F., Lopes V., Carvalho A.M. Conservation and sustainable uses of medicinal and aromatic plants genetic resources on the worldwide for human welfare. Ind. Crop. Prod. 2016;88:8–11. doi: 10.1016/j.indcrop.2016.02.035. DOI
Lange D. The role of east and southeast Europe in the medicinal and aromatic plants’ trade. Med. Plant Conserv. 2002;8:14–18.
Qazi M., Molvi K. Herbal medicine: A comprehensive review. Int. J. Pharm. Res. 2016;8:1–5.
Vasisht K., Sharma N., Karan M. Current perspective in the international trade of medicinal plants material: An update. Curr. Pharm. Des. 2016;22:4288–4336. doi: 10.2174/1381612822666160607070736. PubMed DOI
Saeed S.T., Samad A. Emerging threats of begomoviruses to the cultivation of medicinal and aromatic crops and their management strategies. Virus Dis. 2017;28:1–17. doi: 10.1007/s13337-016-0358-0. PubMed DOI PMC
Ticktin T. The ecological implications of harvesting non-timber forest products. J. Appl. Ecol. 2004;41:11–21. doi: 10.1111/j.1365-2664.2004.00859.x. PubMed DOI
Chen S.-L., Yu H., Luo H.-M., Wu Q., Li C.-F., Steinmetz A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016;11:1–10. doi: 10.1186/s13020-016-0108-7. PubMed DOI PMC
Thompson N.M., Bir C., Widmar D.A., Mintert J.R. Farmer perceptions of precision agriculture technology benefits. J. Agric. Appl. Econ. 2019;51:142–163. doi: 10.1017/aae.2018.27. DOI
Shafi U., Mumtaz R., García-Nieto J., Hassan S.A., Zaidi S.A.R., Iqbal N. Precision agriculture techniques and practices: From considerations to applications. Sensors. 2019;19:3796. doi: 10.3390/s19173796. PubMed DOI PMC
Karim F., Karim F. Monitoring system using web of things in precision agriculture. Procedia Comput. Sci. 2017;110:402–409. doi: 10.1016/j.procs.2017.06.083. DOI
Bariotakis M., Georgescu L., Laina D., Oikonomou I., Ntagounakis G., Koufaki M.-I., Souma M., Choreftakis M., Zormpa O.G., Smykal P. From wild harvest towards precision agriculture: Use of Ecological Niche Modelling to direct potential cultivation of wild medicinal plants in Crete. Sci. Total Environ. 2019;694:133681. doi: 10.1016/j.scitotenv.2019.133681. PubMed DOI
Nelson G.C., Valin H., Sands R.D., Havlík P., Ahammad H., Deryng D., Elliott J., Fujimori S., Hasegawa T., Heyhoe E. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl. Acad. Sci. USA. 2014;111:3274–3279. doi: 10.1073/pnas.1222465110. PubMed DOI PMC
Dono G., Cortignani R., Dell’Unto D., Deligios P., Doro L., Lacetera N., Mula L., Pasqui M., Quaresima S., Vitali A. Winners and losers from climate change in agriculture: Insights from a case study in the Mediterranean basin. Agric. Syst. 2016;147:65–75. doi: 10.1016/j.agsy.2016.05.013. DOI
Duijker G., Bertsias A., Symvoulakis E., Moschandreas J., Malliaraki N., Derdas S., Tsikalas G., Katerinopoulos H., Pirintsos S., Sourvinos G. Reporting effectiveness of an extract of three traditional Cretan herbs on upper respiratory tract infection: Results from a double-blind randomized controlled trial. J. Ethnopharmacol. 2015;163:157–166. doi: 10.1016/j.jep.2015.01.030. PubMed DOI PMC
Giweli A., Džamić A.M., Soković M., Ristić M.S., Marin P.D. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules. 2012;17:4836–4850. doi: 10.3390/molecules17054836. PubMed DOI PMC
Sarac N., Ugur A. Antimicrobial activities of the essential oils of Origanum onites L. Origanum vulgare L. subspecies hirtum (Link) Ietswaart, Satureja thymbra L. and Thymus cilicicus Boiss. & Bal. growing wild in Turkey. J. Med. Food. 2008;11:568–573. PubMed
Pirintsos S., Bariotakis M., Kampa M., Sourvinos G., Lionis C., Castanas E. The therapeutic potential of the essential oil of Thymbra capitata (L.) Cav. Origanum dictamnus L. and Salvia fruticosa Mill. and a case of plant-based pharmaceutical development. Front. Pharmacol. 2020;11:522213. doi: 10.3389/fphar.2020.522213. PubMed DOI PMC
Pirintsos S., Panagiotopoulos A., Bariotakis M., Daskalakis V., Lionis C., Sourvinos G., Karakasiliotis I., Kampa M., Castanas E. From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples. Molecules. 2022;27:4060. doi: 10.3390/molecules27134060. PubMed DOI PMC
Pitarokili D., Tzakou O., Couladis M., Verykokidou E. Composition and antifungal activity of the essential oil of Salvia pomifera subsp. calycina growing wild in Greece. J. Essent. Oil Res. 1999;11:655–659. doi: 10.1080/10412905.1999.9701233. DOI
Stojanović G., Palić I., Ursić-Janković J. Composition and antimicrobial activity of the essential oil of Micromeria cristata and Micromeria juliana. Flavour Fragr. J. 2006;21:77–79. doi: 10.1002/ffj.1507. DOI
Tseliou M., Pirintsos S.A., Lionis C., Castanas E., Sourvinos G. Antiviral effect of an essential oil combination derived from three aromatic plants (Coridothymus capitatus (L.) Rchb. f. Origanum dictamnus L. and Salvia fruticosa Mill.) against viruses causing infections of the upper respiratory tract. J. Herb. Med. 2019;17:100288. doi: 10.1016/j.hermed.2019.100288. DOI
Dimopoulos P., Raus T., Bergmeier E., Constantinidis T., Iatrou G., Kokkini S., Strid A., Tzanoudakis D. Vascular Plants of Greece: An Annotated Checklist. Botanischer Garten und Botanisches Museum Berlin-Dahlem; Berlin, Germany: Hellenic Botanical Society; Athens, Greece: 2013.
Bosque M., Adamogianni M.-I., Bariotakis M., Fazan L., Stoffel M., Garfi G., Gratzfeld J., Kozlowski G., Pirintsos S. Fine-scale spatial patterns of the Tertiary relict Zelkova abelicea (Ulmaceae) indicate possible processes contributing to its persistence to climate changes. Reg. Environ. Chang. 2014;14:835–849. doi: 10.1007/s10113-013-0544-1. DOI
Vrochidou A.-E., Tsanis I. Assessing precipitation distribution impacts on droughts on the island of Crete. Nat. Hazards Earth Syst. Sci. 2012;12:1159–1171. doi: 10.5194/nhess-12-1159-2012. DOI
Kourgialas N.N., Anyfanti I., Karatzas G.P., Dokou Z. An integrated method for assessing drought prone areas-Water efficiency practices for a climate resilient Mediterranean agriculture. Sci. Total Environ. 2018;625:1290–1300. doi: 10.1016/j.scitotenv.2018.01.051. PubMed DOI
Tsakiris G. Drought risk assessment and management. Water Resour. Manag. 2017;31:3083–3095. doi: 10.1007/s11269-017-1698-2. DOI
Turland N.J., Chilton L., Press J.R. Flora of the Cretan Area: Annotated Checklist and Atlas. HMSO; London, UK: 1993.
Fick S.E., Hijmans R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Bariotakis M., Koutroumpa K., Karousou R., Pirintsos S.A. Environmental (in) dependence of a hybrid zone: Insights from molecular markers and ecological niche modeling in a hybrid zone of Origanum (Lamiaceae) on the island of Crete. Ecol. Evol. 2016;6:8727–8739. doi: 10.1002/ece3.2560. PubMed DOI PMC
Bariotakis M., Pirintsos S.A. Mapping absences within the BAM concept: Towards a new generation of ecological and environmental indicators. Ecol. Indic. 2018;90:564–568. doi: 10.1016/j.ecolind.2018.03.043. DOI
Smýkal P., Chaloupská M., Bariotakis M., Marečková L., Sinjushin A., Gabrielyan I., Akopian J., Toker C., Kenicer G., Kitner M. Spatial patterns and intraspecific diversity of the glacial relict legume species Vavilovia formosa (Stev.) Fed. in Eurasia. Plant Syst. Evol. 2017;303:267–282. doi: 10.1007/s00606-016-1368-5. DOI
Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., Das R.R., Bhattacharyya D., Richards C., Coyne C. Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci. Rep. 2017;7:17384. doi: 10.1038/s41598-017-17623-4. PubMed DOI PMC
Petitpierre B., Kueffer C., Broennimann O., Randin C., Daehler C., Guisan A. Climatic niche shifts are rare among terrestrial plant invaders. Science. 2012;335:1344–1348. doi: 10.1126/science.1215933. PubMed DOI
Shabani F., Kumar L., Taylor S. Suitable regions for date palm cultivation in Iran are predicted to increase substantially under future climate change scenarios. J. Agric. Sci. 2014;152:543–557. doi: 10.1017/S0021859613000816. DOI
Phillips S.J., Dudík M., Schapire R.E. Maxent Software for Modeling Species Niches and Distributions. 2017. [(accessed on 30 August 2023)]. version 3.4.1. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/
Elith J., Phillips S.J., Hastie T., Dudík M., Chee Y.E., Yates C. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI
Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI
Hernandez P.A., Graham C.H., Master L.L., Albert D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 2006;29:773–785. doi: 10.1111/j.0906-7590.2006.04700.x. DOI
Phillips S.J., Anderson R.P., Schapire R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI
Tatebe H., Ogura T., Nitta T., Komuro Y., Ogochi K., Takemura T., Sudo K., Sekiguchi M., Abe M., Saito F. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019;12:2727–2765. doi: 10.5194/gmd-12-2727-2019. DOI
Hajima T., Watanabe M., Yamamoto A., Tatebe H., Noguchi M.A., Abe M., Ohgaito R., Ito A., Yamazaki D., Okajima H. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 2020;13:2197–2244. doi: 10.5194/gmd-13-2197-2020. DOI
Riahi K., Van Vuuren D.P., Kriegler E., Edmonds J., O’neill B.C., Fujimori S., Bauer N., Calvin K., Dellink R., Fricko O. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017;42:153–168. doi: 10.1016/j.gloenvcha.2016.05.009. DOI
Bi D., Dix M., Marsland S., O’farrell S., Sullivan A., Bodman R., Law R., Harman I., Srbinovsky J., Rashid H.A. Configuration and spin-up of ACCESS-CM2, the new generation Australian community climate and earth system simulator coupled model. J. South. Hemisphere Earth Syst. Sci. 2020;70:225–251. doi: 10.1071/ES19040. DOI
Rashid H., Dix M., Sullivan A., Bodman R., Zhu H. ACCESS Climate Model Simulations for the Coupled Model Intercomparison Project (CMIP6) Earth Systems and Climate Change Hub; Canberra, Australia: 2020. Earth Systems and Climate Change Hub Report No. 14.
Rashid H. Delving Deeper into Australia’s National Climate Model: The Australian Community Climate and Earth System Simulator (ACCESS) Earth Systems and Climate Change Hub; Canberra, Australia: 2020. Earth Systems and Climate Change Hub Report No. 12.
Team R.C.R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. version 4.2.0.
Bivand R., Keitt T., Rowlingson B., Pebesma E., Sumner M., Hijmans R., Rouault E., Bivand M.R. Package ‘rgdal’. [(accessed on 30 August 2023)];Bind. Geospat. Data Abstr. Libr. 2015 172 Available online: https://cran.r-project.org/web/packages/rgdal/index.html.
Pebesma E., Bivand R.S. S classes and methods for spatial data: The sp package. R News. 2005;5:9–13.
Hijmans R., van Etten J. R package. 2020. [(accessed on 30 August 2023)]. version 3.4–5. Raster: Geographic Data Analysis and Modeling. Available online: https://cran.r-project.org/package=raster.
Pearce J., Ferrier S. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol. Model. 2000;128:127–147. doi: 10.1016/S0304-3800(99)00227-6. DOI
de Moraes Weber M., Stevens R.D., Lorini M.L., Grelle C.E.V. Have old species reached most environmentally suitable areas? A case study with S outh A merican phyllostomid bats. Glob. Ecol. Biogeogr. 2014;23:1177–1185. doi: 10.1111/geb.12198. DOI
Williams M.I., Dumroese R.K. Preparing for climate change: Forestry and assisted migration. J. For. 2013;111:287–297. doi: 10.5849/jof.13-016. DOI
Vincent H., Amri A., Castañeda-Álvarez N.P., Dempewolf H., Dulloo E., Guarino L., Hole D., Mba C., Toledo A., Maxted N. Modeling of crop wild relative species identifies areas globally for in situ conservation. Commun. Biol. 2019;2:136. doi: 10.1038/s42003-019-0372-z. PubMed DOI PMC
Shahzad Z., Rouached H. Protecting plant nutrition from the effects of climate change. Curr. Biol. 2022;32:R725–R727. doi: 10.1016/j.cub.2022.05.056. PubMed DOI
Cahyaningsih R., Phillips J., Brehm J.M., Gaisberger H., Maxted N. Climate change impact on medicinal plants in Indonesia. Glob. Ecol. Conserv. 2021;30:e01752. doi: 10.1016/j.gecco.2021.e01752. DOI
Kunwar R.M., Thapa-Magar K.B., Subedi S.C., Kutal D.H., Baral B., Joshi N.R., Adhikari B., Upadhyaya K.S., Thapa-Magar S., Ansari A.S. Distribution of important medicinal plant species in Nepal under past, present, and future climatic conditions. Ecol. Indic. 2023;146:109879. doi: 10.1016/j.ecolind.2023.109879. DOI
Tshabalala T., Mutanga O., Abdel-Rahman E.M. Predicting the Geographical Distribution Shift of Medicinal Plants in South Africa Due to Climate Change. Conservation. 2022;2:694–708. doi: 10.3390/conservation2040045. DOI
Kaky E., Gilbert F. Predicting the distributions of Egypt’s medicinal plants and their potential shifts under future climate change. PLoS ONE. 2017;12:e0187714. doi: 10.1371/journal.pone.0187714. PubMed DOI PMC
You J., Qin X., Ranjitkar S., Lougheed S.C., Wang M., Zhou W., Ouyang D., Zhou Y., Xu J., Zhang W. Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci. Rep. 2018;8:5879. doi: 10.1038/s41598-018-24360-9. PubMed DOI PMC
Zhang K., Liu Z., Abdukeyum N., Ling Y. Potential Geographical Distribution of Medicinal Plant Ephedra sinica Stapf under Climate Change. Forests. 2022;13:2149. doi: 10.3390/f13122149. DOI
Guo Y., Wei H., Lu C., Gao B., Gu W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ. 2016;4:e2554. doi: 10.7717/peerj.2554. PubMed DOI PMC
Li B., Cantino P.D., Olmstead R.G., Bramley G.L., Xiang C.-L., Ma Z.-H., Tan Y.-H., Zhang D.-X. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification. Sci. Rep. 2016;6:34343. doi: 10.1038/srep34343. PubMed DOI PMC
Saccone P., Hoikka K., Virtanen R. What if plant functional types conceal species-specific responses to environment? Study on arctic shrub communities. Ecology. 2017;98:1600–1612. doi: 10.1002/ecy.1817. PubMed DOI
Thomas H.J., Myers-Smith I.H., Bjorkman A.D., Elmendorf S.C., Blok D., Cornelissen J.H., Forbes B.C., Hollister R.D., Normand S., Prevéy J.S. Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome. Glob. Ecol. Biogeogr. 2019;28:78–95. doi: 10.1111/geb.12783. PubMed DOI PMC
Petersm R., Darling J. The greenhouse effect and nature reserves: Global warming would diminish biological diversity by causing extinctions among reserve species. BioScience-Am. Inst. Biol. Sci. 1985 doi: 10.2307/1310052. DOI
Chen I.-C., Hill J.K., Ohlemüller R., Roy D.B., Thomas C.D. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333:1024–1026. doi: 10.1126/science.1206432. PubMed DOI
Lenoir J., Svenning J.C. Climate-related range shifts–A global multidimensional synthesis and new research directions. Ecography. 2015;38:15–28. doi: 10.1111/ecog.00967. DOI
Gairola S., Shariff N.M., Bhatt A., Kala C.P. Influence of climate change on production of secondary chemicals in high altitude medicinal plants: Issues needs immediate attention. J. Med. Plants Res. 2010;4:1825–1829.
Georgescu L., Stefanakis M.K., Kokkini S., Katerinopoulos H.E., Pirintsos S.A. Chemical and genetic characterization of Phlomis species and wild hybrids in Crete. Phytochemistry. 2016;122:91–102. doi: 10.1016/j.phytochem.2015.11.007. PubMed DOI
Pant P., Pandey S., Dall’Acqua S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021;18:e2100345. doi: 10.1002/cbdv.202100345. PubMed DOI
Zandalinas S.I., Balfagón D., Gómez-Cadenas A., Mittler R. Plant responses to climate change: Metabolic changes under combined abiotic stresses. J. Exp. Bot. 2022;73:3339–3354. doi: 10.1093/jxb/erac073. PubMed DOI
Sun Y., Alseekh S., Fernie A.R. Plant secondary metabolic responses to global climate change: A meta-analysis in medicinal and aromatic plants. Glob. Chang. Biol. 2023;29:477–504. doi: 10.1111/gcb.16484. PubMed DOI
Chen S., Gong B. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021;148:102557. doi: 10.1016/j.jdeveco.2020.102557. DOI