Enterococci Isolated from One-Day-Old Chickens and Their Phenotypic Susceptibility to Antimicrobials in the Czech Republic
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
QK1910057, RO0523
Ministry of Agriculture
PubMed
37887187
PubMed Central
PMC10603836
DOI
10.3390/antibiotics12101487
PII: antibiotics12101487
Knihovny.cz E-resources
- Keywords
- animal, multiresistance, organ, poultry, prevalence, resistance, spectrum,
- Publication type
- Journal Article MeSH
Our study describes the prevalence and spectrum of enterococci isolated from one-day-old chickens in the Czech Republic, their level of antimicrobial resistance, and the occurrence of multiresistance. Over a 24-month period from 1 August 2021 to 31 July 2023, a total of 464 mixed samples of one-day-old chicken organs were examined during routine inspections at 12 randomly selected poultry farms in the Czech Republic. The samples were processed via cultivation methods and suspected strains were confirmed using the MALDI-TOF Mass Spectrometry method. Antimicrobial susceptibility was determined using the MIC method for eight antimicrobials. A total of 128 isolates (prevalence of 27.6%) representing 4 species of enterococci were isolated, including Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, and Enterococcus hirae, with prevalence rates of 23.3%, 1.5%, 2.2%, and 0.6%, respectively. Susceptibility tests showed a high percentage of susceptible strains among E. faecalis, E. faecium, and E. gallinarum for penicillin-based antibiotics, sulfamethoxazole with trimethoprim, and florfenicol (80-100% susceptible strains). E. hirae was an exception, displaying complete resistance to enrofloxacin (0% susceptible strains) and a high degree of resistance to other tested antimicrobials (33.3% susceptible strains). Among the isolated strains, a total of 16 isolates (12.5%) showed resistance to 3 or more antimicrobials. Complete resistance to all eight antimicrobials simultaneously was observed in four isolates (3.1%). This research shows the possible sources of pathogenic enterococci and their virulence and resistance genes. The findings hold relevance for both veterinary and human medicine, contributing to a better understanding of enterococcal circulation in the human ecosystem and food chain, as well as the development of their resistance and multiresistance.
Ptacy S R O Valasska Bystrice 194 756 27 Valašská Bystřice Czech Republic
Veterinary Research Institute Hudcova 296 70 621 00 Brno Czech Republic
See more in PubMed
Yost C.K., Diarra M.S., Topp E. Animals and humans as sources of fecal indicator bacteria. In: Sadowsky M., Whitman R., editors. The Fecal Bacteria. American Society for Microbiology Press; Washington, DC, USA: 2011. pp. 67–91.
Dubin K., Pamer E.G. Enterococci and their interactions with the intestinal microbiome. Microbiol. Spectr. 2017;5:14. doi: 10.1128/microbiolspec.BAD-0014-2016. PubMed DOI PMC
Garcia-Solache M., Rice L.B. The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019;32:e00058-18. doi: 10.1128/CMR.00058-18. PubMed DOI PMC
Byappanahalli M.N., Nevers M.B., Korajkic A., Staley Z.R., Harwood V.J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 2012;76:685–706. doi: 10.1128/MMBR.00023-12. PubMed DOI PMC
Boehm A.B., Sassoubre L.M. Enterococci as indicators of environmental fecal contamination. In: Gilmore M.S., Clewell D.B., Ike Y., Shankar N., editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary; Boston, MA, USA: 2014. PubMed
Rehman M.A., Yin X., Zaheer R., Goji N., Amoako K.K., McAllister T., Pritchard J., Topp E., Diara M.S. Genotypes and Phenotypes of Enterococci Isolated from Broiler Chickens. Front. Sust. Food Syst. 2018;13:83. doi: 10.3389/fsufs.2018.00083. DOI
Tyson G.H., Nyirabahizi E., Crarey E., Kabera C., Lam C., Rice-Trujillo C., McDermott P.F., Tate H. Prevalence and antimicrobial resistance of enterococci isolated from retail meats in the United States, 2002 to 2014. Appl. Environ. Microbiol. 2018;84:e01902-17. doi: 10.1128/AEM.01902-17. PubMed DOI PMC
Lim S., Park M., Chang D. Characterization of bacteriocin produced by Enterococcus faecium MJ-14 isolated from meju. Food Sci. Biotechnol. 2005;14:49–57.
Belgacem B.Z., Ferchichi M., Prévost H., Dousset X., Manai M. Screeningfor anti-listerial bacteriocin-producing lactic acid bacteriafrom ‘Gueddid’ a traditionally Tunisian fermented meat. Meat Sci. 2007;78:513–521. doi: 10.1016/j.meatsci.2007.07.021. PubMed DOI
Aguilar-Galvez A., Dubois-Dauphin R., Campos D., Thonart P. Genetic determination and localization of multiple bacteriocins produced by Enterococcus faecium CWBI-B1430 and Enterococcus mundtii CWBI-B1431. Food Sci. Biotechnol. 2011;20:289–296. doi: 10.1007/s10068-011-0041-6. DOI
Kalode V., Patil P. Enterococcus Species: A Systemic review. J. Pure Appl. Microbiol. 2023;17:761–767. doi: 10.22207/JPAM.17.2.59. DOI
Upadhyaya P.M.G., Umapathy B.L., Ravikumar K.L. Comparative study forthe presence of enterococcal virulence factorsgelatinase, hemolysin and biofilmamongclinical and commensalisolates of Enterococcus faecalis. J. Lab. Physicians. 2010;2:100–104. PubMed PMC
Ira P., Sujatha S., Chandra P.S. Virulence factors in clinical and commensalisolates of Enterococcus species. Indian J. Pathol. Microbiol. 2013;56:24–30. PubMed
Murray B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 1990;3:46–65. doi: 10.1128/CMR.3.1.46. PubMed DOI PMC
Sood S., Malhotra M., Das B.K., Kapil A. Enterococcal infections & antimicrobial resistance. Ind. J. Med. Res. 2008;128:111–121. PubMed
Vu J., Carvalho J. Enterococcus: Review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology. Front. Biol. 2011;6:357–366. doi: 10.1007/s11515-011-1167-x. DOI
Obeng A.S., Rickard H., Ndi O., Sexton M., Barton M. Comparison of antimicrobial resistance patterns in enterococci from intensive and free range chickens in Australia. Avian Pathol. 2013;42:45–54. doi: 10.1080/03079457.2012.757576. PubMed DOI
Billington E.O., Phang S.H., Gregson D.B., Pitout J.D., Ross T., Church D.L., Laupland K.P., Parkins M.D. Incidence, risk factors, and outcomes for Enterococcus spp. blood stream infections: A population-based study. Int. J. Infect Dis. 2014;26:76–82. doi: 10.1016/j.ijid.2014.02.012. PubMed DOI
Torres C., Alonso C.A., Ruiz-Ripa L., León-Sampedro R., Del Campo R., Coque T.M. Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol. Spectr. 2018;6:ARBA-0032-2018. doi: 10.1128/microbiolspec.ARBA-0032-2018. PubMed DOI PMC
European Centre for Disease Prevention and Control Publishes Annual Epidemiological Report 2011. Eurosurveillance. 2012;16:1. PubMed
Ammerlaan H.S.M., Harbarth S., Buiting A.G.M., Crook D.W., Fitzpatrick F., Hanberger H., Herwald L.A., van Keulen P.H.J., Kluytmans J.A.J.W., Kola A., et al. Secular trends in nosocomial bloodstream infections: Antibiotic-resistant bacteria increase the total burden of infection. Clin. Infect. Dis. 2013;56:798–805. doi: 10.1093/cid/cis1006. PubMed DOI
De Kraker M.E., Jarlier V., Monen J.C., Heuer O.E., Van De Sande N., Grundmann H. The changing epidemiology of bacteraemias in Europe: Trends from the European Antimicrobial Resistance Surveillance System. Clin. Microbiol. Infect. 2013;9:860–868. doi: 10.1111/1469-0691.12028. PubMed DOI
Gregersen R.H., Petersen A., Christensen H., Bisgaard M. Multilocus sequence typing of Enterococcus faecalis isolates demonstrating different lesion types in broiler breeders. Avian. Pathol. 2010;39:435–440. doi: 10.1080/03079457.2010.517250. PubMed DOI
Olsen R.H., Frantzen C., Christensen H., Bisgaard M. An investigation on first-week mortality in layers. Avian. Dis. 2012;56:51–57. doi: 10.1637/9777-051011-Reg.1. PubMed DOI
Meijerhof R. Egg quality. In: Brugere Picoux J., Vaillancourt J.-P., Bouzouaia M., editors. Manual of Poultry Diseases. 10th ed. AFAS; Paris, France: 2015. pp. 3–39.
Meijerhof R. Chick quality. In: Brugere Picoux J., Vaillancourt J.-P., Bouzouaia M., editors. Manual of Poultry Diseases. 10th ed. AFAS; Paris, France: 2015. pp. 16–23.
Giguere S., Prescott J.F., Baggot J.D., Walker R.D., Dowling P.M. Antimicrobial Therapy in Veterinary Medicine. 4th ed. Iowa State University Press; Ames, IA, USA: 2006.
Kühn S., Iversen A., Burman L.G., Olsson-Liljequist B., Franklin A., Finn M., Aarestrup F., Seyfarth A.M., Blanch A.R., Taylor H., et al. Epidemiology and ecology of enterococci, withspecial reference to antibiotic resistant strains, in animals, humans and the environment. Int. J. Antimicrob. Agents. 2000;14:337–342. doi: 10.1016/S0924-8579(00)00146-1. PubMed DOI
Andersson D.I., Hughes D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 2011;35:901–911. doi: 10.1111/j.1574-6976.2011.00289.x. PubMed DOI
Palmer K.L., Kos V.N., Gilmore M.S. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 2010;13:632–639. doi: 10.1016/j.mib.2010.08.004. PubMed DOI PMC
Maasjost J., Muhldorfer K., Cortes de Jackel S., Hafez H.M. Antimicrobial susceptibility patterns of Enterococcus faecalis and Enterococcus faecium isolated from poultry flocks in Germany. Avian. Dis. 2015;59:143–148. doi: 10.1637/10928-090314-RegR. PubMed DOI
Aarestrup F.M., Agerso Y., Gerner-Smidt P., Madsen M., Jensen L.B. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn. Microbiol. Infect. Dis. 2000;37:127–137. doi: 10.1016/S0732-8893(00)00130-9. PubMed DOI
World Health Organisation, 2017. One Health. 2017. [(accessed on 18 August 2023)]. Available online: https://www.who.int/news-room/questions-and-answers/item/one-health.
Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Eupropean Union Regulations; Brussels, Belgium: 2019. pp. L4–L43.
European Medicines Agency Categorisation of Antibiotics Used in Animals Promotes Responsible Use to Protect Public and Animal Health. [(accessed on 18 August 2023)]. Available online: https://www.ema.europa.eu/en/news/categorisation-antibiotics-used-animals-promotes-responsible-use-protect-public-animal-health.
Moellering R.C., Jr. Emergence of Enterococcus as a significant pathogen. Clin. Infect. Dis. 1992;14:1173–1176. doi: 10.1093/clinids/14.6.1173. PubMed DOI
Prakash V.P., Rao S.R., Parija S.C. Emergence of unusual species of enterococci causing infections, South India. BMC Infect Dis. 2005;5:14. doi: 10.1186/1471-2334-5-14. PubMed DOI PMC
Hamarova L., Kopcakova A., Kocianova-Adamcova M., Piknova M., Javorsky P., Pristas P. Antimicrobial resistance of enterococci from wild animals in Slovakia. Pol. J. Environ. Stud. 2021;30:2085–2091. doi: 10.15244/pjoes/126371. DOI
Balloy D. Streptococci and Enterococci. In: Brugere Picoux J., Vaillancourt J.-P., Bouzouaia M., editors. Manual of Poultry Diseases. 10th ed. AFAS; Paris, France: 2015. pp. 367–373.
Kilonzo-Nthenge A., Brown A., Nahashon S.N., Long D. Occurrence and antimicrobial resistance of enterococci isolated from organic and conventional retail chicken. J. Food Protect. 2015;78:760–766. doi: 10.4315/0362-028X.JFP-14-322. PubMed DOI
Noenchat P., Nhoonoi C., Srithong T., Lertpiriyasakulkit S., Sornplang P. Prevalence and multidrug resistance of Enterococcus species isolated from chickens at slaughterhouses in Nakhon Ratchasima Province, Thailand. Vet. World. 2022;5:2535–2542. doi: 10.14202/vetworld.2022.2535-2542. PubMed DOI PMC
Makarov D.A., Ivanova O.E., Pomazkova A.V., Egoreva M.A., Prasolova O.V., Lenev S.V., Gergel M.A., Bukova N.K., Karabanov S.Y. Antimicrobial resistance of comensal Enterococcus faecalis and Enterococcus faecium from food-producing animals in Russia. Vet. World. 2022;15:611–621. doi: 10.14202/vetworld.2022.611-621. PubMed DOI PMC
Ugwu C., Chukwudile U.B., Ugwu C.C. Molecular determinants of virulence and antimicrobial resistance among Enterococcus speciesisolated from chickens. Poult. Sci. J. 2022;11:47–57.
Alzahrani O.M., Fayez M., Alswat A.S., Alkafafy M., Mahmoud S.F., Al-Marri T., Almuslem A., Ashfaq H., Yusuf S. Antimicrobial resistance, biofilm formation, and virulence genes in Enterococcus species from small backyard chicken flocks. Antibiotics. 2022;11:380. doi: 10.3390/antibiotics11030380. PubMed DOI PMC
Kumar S., Rao U.P.C., Natarajan A., Mali S., Beena P.M. Virulence factors of clinical and fecal isolates of enterococcispecies. J. Pure Appl. Microbiol. 2023;17:1097–1102. doi: 10.22207/JPAM.17.2.39. DOI
Rice E.W., Messer J.W., Johnson C.H., Reasoner D.J. Occurrence of high-level aminoglycoside resistance in enviromental isolates of enterococci. Appl. Environ. Microbiol. 1995;61:374–376. doi: 10.1128/aem.61.1.374-376.1995. PubMed DOI PMC
Lukasova J., Sustackova A. Enterococci and antibiotic resistance. Acta Vet. Brno. 2003;72:315–323. doi: 10.2754/avb200372020315. DOI
Urban-Chmiel R., Marek A., Stȩpien-Pysniak D., Wieczorek K., Dec M., Nowaczek A., Osek J. Antibiotic resistance in bacteria—A review. Antibiotics. 2022;11:1079. doi: 10.3390/antibiotics11081079. PubMed DOI PMC
Bushby S.R., Hitchings G.H. Trimethoprim, a sulphonamidepotentiator. Br. J. Pharmacol. Chemother. 1968;33:72–90. doi: 10.1111/j.1476-5381.1968.tb00475.x. PubMed DOI PMC
Zervos M.J., Schaberg D.R. Reversal of the in vitro susceptibility of enterococci to trimethoprim-sulfamethoxazole by folinic acid. Antimicrob. Agents Chemother. 1985;28:446–448. doi: 10.1128/AAC.28.3.446. PubMed DOI PMC
Grayson M.L., Thauvin-Eliopoulos C., Eliopoulos G.M., Yao J.D., DeAngelis D.V., Walton L., Woolley J.L., Moellering R.C., Jr. Failure of trimethoprim-sulfamethoxazole therapy in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 1990;34:1792–1794. doi: 10.1128/AAC.34.9.1792. PubMed DOI PMC
Chenoweth C.E., Robinson K.A., Schaberg D.R. Efficacy of ampicillin vs. trimethoprim-sulfamethoxazole in a mouse model of lethal enterococcal peritonitis. Antimicrob. Agents Chemother. 1990;34:1800–1802. doi: 10.1128/AAC.34.9.1800. PubMed DOI PMC
Hollenbeck B.L., Rice L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3:421–569. doi: 10.4161/viru.21282. PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing. Clinical Breakpoints—Breakpoints and Guidance. [(accessed on 18 August 2023)]. Available online: https://eucast.org/clinical_breakpoints/
Sanaliba P., Tezel B.U., Senturk E. Antimicrobial resistance of Enterococcus species isolated from Chicken in Turkey. Korean J. Food Sci. 2018;38:391–402. PubMed PMC
Abouelnaga M., Lamas A., Quintela-Baluja M., Osman M., Miranda J.M., Cepeda A., Franco C.M. Evaluation of theextent of spreading of virulence factors and antibiotic resistance in enterococci isolated from fermented and unfermented foods. Ann. Microbiol. 2016;66:577–585. doi: 10.1007/s13213-015-1138-6. DOI
Rafaat S.A., Abo-Elmagd E.K., Awad R.A., Hassan E.M. Prevalence of vancomycin-resistant enterococci in different food samples. Egypt J. Med. Microbiol. 2016;25:47–55.
Jahan M., Krause D.O., Holley R.A. Antimicrobial resistance of Enterococcus species from meat and fermented meat products isolated by a PCR-based rapid screening method. Int. J. Food Microbiol. 2013;163:89–95. doi: 10.1016/j.ijfoodmicro.2013.02.017. PubMed DOI
Bulajic S., Tambur Z., Opacic D., Miljkovic-Selimocic B., Doder R., Cenic-Miloševic D. Characterization of antibiotic resistance phenotypes and resistance genes in Enterococcus spp. isolated from cheeses. Arch. Biol. Sci. 2015;67:139–146. doi: 10.2298/ABS140426016B. DOI
Wasteson Y., Roe D.E., Falk K., Roberts M.C. Characterization of tetracycline and erythromycin resistance in Actinobacillus pleuropneumoniae. Vet. Microbiol. 1995;48:41–50. doi: 10.1016/0378-1135(95)00130-1. PubMed DOI
Votava M., Ruzicka F., Woznicova V., Cernohorska L., Dvorackova M., Hola V., Zahradnicek O. Medical Microbiology—Examination Methods. 1st ed. Neptun; Brno, Czech Republic: 2010. pp. 312–313. (In Czech)
Bzdil J. SOP02/21Cultivation and Identification of Bacteria from the Genus Enterococcus. Ptacy s.r.o.; Valasska Bystrice, Czech Republic: 2021. p. 4. (In Czech)
Clinical Laboratory Standards Institute . VET01-A4 Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard. 4th ed. Clinical Laboratory Standards Institute; Wayne, PA, USA: 2013. pp. 1–73.
Clinical Laboratory Standards Institute . Performance Standards for Antimicrobial Susceptibility Tests for Bacteria Isolated from Animals. CLSI Supplement VET01S. 5th ed. Clinical Laboratory Standards Institute; Wayne, PA, USA: 2020. pp. 1–216.
Schwarz S., Silley P., Simjee S., Woodford N., van Duijkeren E., Johnson A.P., Gaastra W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010;65:601–604. doi: 10.1093/jac/dkq037. PubMed DOI