Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Robust Grape Detector Based on SVMs and HOG Features

P. Škrabánek, P. Doležel,

. 2017 ; 2017 (-) : 3478602. [pub] 20170518

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18010496

Detection of grapes in real-life images is a serious task solved by researchers dealing with precision viticulture. In the case of white wine varieties, grape detectors based on SVMs classifiers, in combination with a HOG descriptor, have proven to be very efficient. Simplified versions of the detectors seem to be the best solution for practical applications. They offer the best known performance versus time-complexity ratio. As our research showed, a conversion of RGB images to grayscale format, which is implemented at an image preprocessing level, is ideal means for further improvement of performance of the detectors. In order to enhance the ratio, we explored relevance of the conversion in a context of a detector potential sensitivity to a rotation of berries. For this purpose, we proposed a modification of the conversion, and we designed an appropriate method for a tuning of such modified detectors. To evaluate the effect of the new parameter space on their performance, we developed a specialized visualization method. In order to provide accurate results, we formed new datasets for both tuning and evaluation of the detectors. Our effort resulted in a robust grape detector which is less sensitive to image distortion.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010496
003      
CZ-PrNML
005      
20180419144010.0
007      
ta
008      
180404s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2017/3478602 $2 doi
035    __
$a (PubMed)28607551
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Škrabánek, Pavel $u Department of Process Control, University of Pardubice, Pardubice, Czech Republic.
245    10
$a Robust Grape Detector Based on SVMs and HOG Features / $c P. Škrabánek, P. Doležel,
520    9_
$a Detection of grapes in real-life images is a serious task solved by researchers dealing with precision viticulture. In the case of white wine varieties, grape detectors based on SVMs classifiers, in combination with a HOG descriptor, have proven to be very efficient. Simplified versions of the detectors seem to be the best solution for practical applications. They offer the best known performance versus time-complexity ratio. As our research showed, a conversion of RGB images to grayscale format, which is implemented at an image preprocessing level, is ideal means for further improvement of performance of the detectors. In order to enhance the ratio, we explored relevance of the conversion in a context of a detector potential sensitivity to a rotation of berries. For this purpose, we proposed a modification of the conversion, and we designed an appropriate method for a tuning of such modified detectors. To evaluate the effect of the new parameter space on their performance, we developed a specialized visualization method. In order to provide accurate results, we formed new datasets for both tuning and evaluation of the detectors. Our effort resulted in a robust grape detector which is less sensitive to image distortion.
650    _2
$a rotace $7 D012399
650    12
$a support vector machine $7 D060388
650    12
$a Vitis $7 D027843
650    _2
$a víno $x analýza $7 D014920
655    _2
$a časopisecké články $7 D016428
700    1_
$a Doležel, Petr $u Department of Process Control, University of Pardubice, Pardubice, Czech Republic.
773    0_
$w MED00163305 $t Computational intelligence and neuroscience $x 1687-5273 $g Roč. 2017, č. - (2017), s. 3478602
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28607551 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180419144111 $b ABA008
999    __
$a ok $b bmc $g 1287981 $s 1007308
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 2017 $c - $d 3478602 $e 20170518 $i 1687-5273 $m Computational intelligence and neuroscience $n Comput Intell Neurosci $x MED00163305
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...