Robust Grape Detector Based on SVMs and HOG Features

. 2017 ; 2017 () : 3478602. [epub] 20170518

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28607551

Detection of grapes in real-life images is a serious task solved by researchers dealing with precision viticulture. In the case of white wine varieties, grape detectors based on SVMs classifiers, in combination with a HOG descriptor, have proven to be very efficient. Simplified versions of the detectors seem to be the best solution for practical applications. They offer the best known performance versus time-complexity ratio. As our research showed, a conversion of RGB images to grayscale format, which is implemented at an image preprocessing level, is ideal means for further improvement of performance of the detectors. In order to enhance the ratio, we explored relevance of the conversion in a context of a detector potential sensitivity to a rotation of berries. For this purpose, we proposed a modification of the conversion, and we designed an appropriate method for a tuning of such modified detectors. To evaluate the effect of the new parameter space on their performance, we developed a specialized visualization method. In order to provide accurate results, we formed new datasets for both tuning and evaluation of the detectors. Our effort resulted in a robust grape detector which is less sensitive to image distortion.

Zobrazit více v PubMed

Arnó J., Martínez-Casasnovas J. A., Ribes-Dasi M., Rosell J. R. Review. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Spanish Journal of Agricultural Research. 2009;7(4):779–790. doi: 10.5424/sjar/2009074-1092. DOI

Berenstein R., Shahar O. B., Shapiro A., Edan Y. Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intelligent Service Robotics. 2010;3(4):233–243. doi: 10.1007/s11370-010-0078-z. DOI

Nuske S., Achar S., Bates T., Narasimhan S., Singh S. Yield estimation in vineyards by visual grape detection. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics (IROS '11); September 2011; pp. 2352–2358. DOI

Diago M.-P., Correa C., Millán B., Barreiro P., Valero C., Tardaguila J. Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions. Sensors. 2012;12(12):16988–17006. doi: 10.3390/s121216988. PubMed DOI PMC

Liu S., Whitty M. Automatic grape bunch detection in vineyards with an SVM classifier. Journal of Applied Logic. 2015;13(4):643–653. doi: 10.1016/j.jal.2015.06.001. DOI

Reis M. J. C. S., Morais R., Peres E., et al. Automatic detection of bunches of grapes in natural environment from color images. Journal of Applied Logic. 2012;10(4):285–290. doi: 10.1016/j.jal.2012.07.004. DOI

Škrabánek P., Runarsson T. P. Detection of grapes in natural environment using support vector machine classifier. Proceedings of the 21st International Conference on Soft Computing MENDEL 2015; June 2015; Brno, Czech Republic. Brno University of Technology; pp. 143–150.

Škrabánek P., Filip Majerík F. Evaluation of performance of grape berry detectors on real-life images. Proceedings of the 22nd International Conference on Soft Computing MENDEL 2016; June 2016; Brno, Czech Republic. Brno University of Technology; pp. 217–224.

Škrabánek P., Majerík F. Artificial intelligence perspectives in intelligent systems. Proceedings of the 5th Computer Science On-line Conference (CSOC '16); 2016; Springer; pp. 35–45.

ITU-R Recommendation BT.601. Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios, March 2011.

Kanan C., Cottrell G. W. Color-to-grayscale: Does the method matter in image recognition? PLoS ONE. 2012;7(1):7. doi: 10.1371/journal.pone.0029740.e29740 PubMed DOI PMC

Dalal N., Triggs B. Histograms of oriented gradients for human detection. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005; June 2005; pp. 886–893. DOI

Burges C. J. C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 1998;2(2):121–167.

Bergstra J., Bengio Y. Random search for hyper-parameter optimization. Journal of Machine Learning Research. 2012;13:281–305.

Sokolova M., Lapalme G. A systematic analysis of performance measures for classification tasks. Information Processing and Management. 2009;45(4):427–437. doi: 10.1016/j.ipm.2009.03.002. DOI

Lampert C. H. Kernel methods in computer vision. Foundations and Trends® in Computer Graphics and Vision. 2009;4(3):193–285. doi: 10.1561/0600000027. DOI

Krig S. Computer Vision Metrics: Survey, Taxonomy, and Analysis. 1st. Berkely, Calif, USA: Apress; 2014. DOI

Howarth R. J. Sources for a history of the ternary diagram. British Society for the History of Science. British Journal for the History of Science. 1996;29(3(102)):337–356. doi: 10.1017/S000708740003449X. DOI

Škrabánek P. Editor for marking and labeling of object images for binary supervised classification in matlab environment. Proceedings of the 21st International Conference on Soft Computing MENDEL 2015; June 2015; Brno, Czech Republic. Brno University of Technology; pp. 151–158.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...