Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice

. 2014 Aug 01 ; 9 () : 107. [epub] 20140801

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25081276

BACKGROUND: Hepatorenal tyrosinaemia (Tyr 1) is a rare inborn error of tyrosine metabolism. Without treatment, patients are at high risk of developing acute liver failure, renal dysfunction and in the long run hepatocellular carcinoma. The aim of our study was to collect cross-sectional data. METHODS: Via questionnaires we collected retrospective data of 168 patients with Tyr 1 from 21 centres (Europe, Turkey and Israel) about diagnosis, treatment, monitoring and outcome. In a subsequent consensus workshop, we discussed data and clinical implications. RESULTS: Early treatment by NTBC accompanied by diet is essential to prevent serious complications such as liver failure, hepatocellular carcinoma and renal disease. As patients may remain initially asymptomatic or develop uncharacteristic clinical symptoms in the first months of life newborn mass screening using succinylacetone (SA) as a screening parameter in dried blood is mandatory for early diagnosis. NTBC-treatment has to be combined with natural protein restriction supplemented with essential amino acids. NTBC dosage should be reduced to the minimal dose allowing metabolic control, once daily dosing may be an option in older children and adults in order to increase compliance. Metabolic control is judged by SA (below detection limit) in dried blood or urine, plasma tyrosine (<400 μM) and NTBC-levels in the therapeutic range (20-40 μM). Side effects of NTBC are mild and often transient. Indications for liver transplantation are hepatocellular carcinoma or failure to respond to NTBC. Follow-up procedures should include liver and kidney function tests, tumor markers and imaging, ophthalmological examination, blood count, psychomotor and intelligence testing as well as therapeutic monitoring (SA, tyrosine, NTBC in blood). CONCLUSION: Based on the data from 21 centres treating 168 patients we were able to characterize current practice and clinical experience in Tyr 1. This information could form the basis for clinical practice recommendations, however further prospective data are required to underpin some of the recommendations.

Allgemeine Kinderheilkunde und Jugendmedizin Universitätsklinikum Freiburg Mathildenstr 1 D 79106 Freiburg Germany

Bambino Gesù Children's Hospital Piazza Sant'Onofrio 4 00165 Rome Italy

Birmingham Children's Hospital Steelhouse Ln Birmingham B4 6NH United Kingdom

Clinic for Paediatric Kidney Liver and Metabolic Diseases Hannover Medical School Carl Neuberg Str 1 D 30625 Hannover Germany

Department für Kinder und Jugendheilkunde Medizinische Universität Innsbruck Anichstrasse 35 A 6020 Innsbruck Austria

Department of Pediatrics 1st Faculty of Medicine Charles University Prague Ke Karlovu 2 Prague 2 128 08 Czech Republic

Dr von Haunersches Kinderspital Lindwurmstr 4 D 80337 München Germany

Hannover Medical School Clinic for Gastroenterology Hepatology and Endocrinology Carl Neuberg Str 1 D 30625 Hannover Germany

Hannover Medical School Institute for Biometry Carl Neuberg Str 1 D 30625 Hannover Germany

Hannover Medical School Institute for Cellular and Molecular Pathology Carl Neuberg Str 1 D 30625 Hannover Germany

Hospital universitario de Cruces Plaza de Cruces 12 48903 San Vicente de Barakaldo Spain

Institute of Clinical Pharmacology Hannover Medical School Carl Neuberg Str 1 D 30625 Hannover Germany

Istanbul University Faculty of Medicine Fatih Capa Istanbul 34093 Turkey

Klinik für Kinder und Jugendmedizin Steinenbergstr 31 D 72764 Reutlingen Germany

Medizinische Universität Graz Auenbruggerplatz 2 A 8036 Graz Austria

Oslo University Hospital P B 4950 Nydalen 0424 Oslo Norway

Pediatric Metabolic Disorders Rambam Medical center 6 Ha'Aliya Street Post Box No 9602 Haifa Haifa 31096 Israel

Queen Fabiola Children's University Hospital Avenue Crocq 15 B 1020 Brussels Belgium

Reference Center for Inherited Metabolic Diseases Hôpital Robert Debré APHP 48 Boulevard Sérurier F 75019 Paris France

Screening Labor Hannover Am Steinweg 11A 13B D 30952 Ronnenberg Benthe Germany

Section of Metabolic Diseases Beatrix Children's Hospital University Medical Center Groningen University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands

Unidad de Enfermedades Metabólicas Congénitas Hospital Clínico Universitario Santiago de Compostela Travesía de Choupana s n 15706 Santiago de Compostela Spain

Universitätsklinik für Kinder und Jugendheilkunde Währinger Gürtel 18 20 1090 Wien Austria

Universitätsklinik für Kinderheilkunde Inselspital Freiburgstrasse 7 CH 3010 Bern Switzerland

Universitätsklinikum Düsseldorf Moorenstr 5 D 40225 Düsseldorf Germany

Universitätsklinikum Hamburg Eppendorf Klinik und Poliklinik für Kinder und Jugendmedizin Martinistr 52 D 20246 Hamburg Germany

Universitätspital Zürich Klinik für Endokrinologie Diabetologie und Klinische Ernährung Rämistrasse 100 CH 8091 Zürich Switzerland

Zobrazit více v PubMed

Lindblad B, Lindstedt S, Steen G. On the enzymatic defects in hereditary tyrosinemia. Proc Natl Acad Sci USA. 1977;74:4641–4645. PubMed PMC

Chakrapani A, Holme E. In: Inborn Metabolic diseases. 4. Fernandez S, Berghe W, editor. Springer, Heidelberg; 2006. Disorders of tyrosine metabolism; pp. 233–243.

Van Spronsen FJ, Bijleveld MA, van Maldegem BT, Wijburg FA. Hepatocellular Carcinoma in Hereditary Tyrosinemia Type I Despite 2-(2 Nitro-4-3-Trifluoro-Methylbenzoyl)-1,3-Cyclohexanedione Treatment. J Pedriatr Gastroenterol Nutr. 2005;40:90–93. PubMed

Weinberg AG, Mize CE, Worthen HG. The occurence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr. 1976;88:434–438. PubMed

Thimm E, Richter-Werkle R, Kamp G, Molke B, Herebian D, Klee D, Mayatepek E, Spiekerkoetter U. Neurocognitive outcome in patients with hypertyrosinemia type I after a long-term treatment with NTBC. J Inherit Metab Dis. 2012;35:263–268. PubMed

De Laet C, Munoz VT, Jaeken J, Francois B, Carton D, Sokal EM, Dan B, Goyens PJ. Neuropsychological outcome of NTBC-treated patients with tyrosinaemia type 1. Dev Med Child Neurol. 2011;53:962–964. PubMed

Pohorecka M, Biernacka M, Jakubowska-Winecka A, Biernacki M, Kusmierska K, Kowalik A, Sykut-Cegielska J. Behavioral and intellectual functioning in patients with tyrosinemia type I. Pediatr Endocrinol Diabetes Metab. 2012;18:96–100. PubMed

Bendadi F, de Koning TJ, Visser G, Prinsen HC, de Sain NG, Verhoeven-Duif N, Sinnema G, van Spronsen FJ, van Hasselt PM. Impaired cognitive functioning in patiens with tyrosinemia type I receiving nitisinone. J Pediatr. 2013;164:398–401. PubMed

Mustonen A, van Amstel HK P, Berger R, Salo MK, Viinikka L, Simola KOJ. Mutation analysis for prenatal diagnosis of hereditary tyrosianaemia type I. Prenat Diagn. 1997;17:964–966. PubMed

Holme E, Lindstedt S. Neonatal screen for hereditary tyrosinemia type I. Lancet. 1992;340:850. PubMed

Masurel-Paulet A, Poggi-Bach J, Rolland MO, Bernard O, Guffon N, Dobbelaere D, Sarles J, de Baulny HO, Touaty G. NTBC-treatment in tyrosinaemia type I: Long-term outcome in french patients. J Inherit Metab Dis. 2008;31:81–87. PubMed

Vondrakova A, Tesarova M, Magner M, Docekalova D, Chrastina P, Prochazkova D, Zeman J, Honzik T. Clinical, biochemical and molecular characteristics in 11 Czech children with tyrosinemia type I. Cas Lek Cesk. 2010;149:411–416. PubMed

Couce ML, Dalmau J, del Toro M, Pintos-Morell G, Aldamiz-Echevarria L. Tyrosinemia type I in Spain: Mutational analysis, treatment and long-term outcome. Pediatr Int. 2011;2011(53):985–989. PubMed

Couce ML, Aldamiz-Echevarria L, Baldellou A, Blasco J, Bueno MA, Dalmau J, De La Vega A, Del Toro M, Diaz C, Lama R, Leao E, Marrero M, Navas VM, Pintos G. Recomendaciones y manejo de la tirosinemia hereditaria Tipo I o Tirosinemia hepatorrenal. An Pediatr (Barc) 2010;73:279.e1–279.e4. PubMed

Larochelle J, Alvarez F, Bussières JF, Chevalier I, Dallaire L, Dubois J, Faucher F, Fenyves D, Goodyer P, Grenier A, Holme E, Laframboise R, Lambert M, Lindstedt S, Maranda B, Melancon S, Merouani A, Mitchell J, Parizeault G, Pelletier L, Phan V, Rinaldo P, Scott CR, Scriver C, Mitchell GA. Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Québec. Mol Genet Metab. 2012;107:49–50. PubMed

Schiff M, Broue P, Chabrol B, De Laet C, Habes D, Mention K, Sarles J, Spraul A, Valayannopoulos V, Baulny H. Heterogneity of follow-up procedures in French and Belgian patients with treated hereditary tyrosinemia type I: results of a questionnaire and proposed guidelines. J Inherit Metab Dis. 2011;35:823–829. PubMed

Coskun T, Ozalp I, Kocak N, Yüce A, Caglar M, Berger R. Type I hereditary tyrosinaemia: presentation of 11 cases. J Inherit Metab Dis. 1991;14:765–770. PubMed

De Laet C, Dionisi-Vici C, Leonard JV, McKiernan P, Mitchell G, Monti L, de Baulny HO, Pintos- Morell G, Spiekerkoetter U. Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis. 2013;8:8. PubMed PMC

Vockley J, Vockley CM. Clinical trials: curing a critical deficiency in metabolic medicine. Mol Genet Metab. 2010;99:244–245. PubMed

Vockley J, Chapman KA, Arnold GL. Development of clinical guidelines for inborn errors of metabolism: a commentary. Mol Genet Metab. 2013;108:203–205. PubMed

Holme E, Lindstedt S. Tyrosinaemia Type I and NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3- cyclohexanedione. J Inherit Metab Dis. 1998;21:507–517. PubMed

Sander J, Janzen N, Peter M, Sander S, Holtkamp U, Schwahn B, Mayatepek E, Trefz FK, Das AM. Newborn Screening or Hepatorenal Tyrosinemia: Tandem Mass Spectrometric Quantification of Succinylacetone. Clin Chem. 2006;52:482–487. PubMed

Schulze A, Hoffman GF, Mayatepek E. Spectrophotometric microassay for delta-aminolevulinate dehydratase in dried-blood spots as conformation for hereditary tyrosinemia type I. Clin Chem. 2001;47:1424–1429. PubMed

Zytkovicz TH, Sahai I, Rush A, Odewale A, Johnson D, Fitzgerald E, Britton D, Eaton RB. Newborn screening for hepatorenal tyrosinemia –I by tandem mass spectrometry using pooled samples: A four-year summery by the New England newborn screening program. Clin Biochem. 2013;46:681–684. PubMed

Allard P, Grenier A, Korson MS, Zytkovicz TH. Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry: analysis of succinylacetone extracted from dried blood spots. Clin Biochem. 2004;37:1010–1015. PubMed

Jakob C, Dorland L, Wikkering B, Kok RM, de Jong APJM, Wadman SK. Stable isotope dilution analysis of succinylacetone using eletrone capture negative ion mass fragmentography: an accurate approach to the pre-neonatal diagnosis of hereditary tyrosinemia type I. Clin Chim Acta. 1988;171:223–232. PubMed

Kvittingen EA, Holme E. In: Inborn Metabolic Diseases. 3. Fernandes J, Saudubray J-M, Berghe G, editor. Springer, Heidelberg; 2000. Disorders of tyrosine metabolism; pp. 186–194.

Magera MJ, Gunawardena ND, Hahn SH, Tortorelli S, Mitchell G, Goodman SI, Rinaldo P, Matern D. Quantative determination of succinylacetone in dried blood spots for newborn screening of tyrosinemia type I. Mol Genet Metab. 2006;88:16–21. PubMed

Mak CM, Lam CW, Chim S, Siu TS, Ng KF, Tam S. Biochemical and molecular diagnosis of tyrosinemia type I with two novel FAH mutations in a Honk Kong Chinese patient: recommendation for expanded newborn screening in Honk Kong. Clin Biochem. 2013;46:155–159. PubMed

Wu JT, Book L, Sudar K. Serum alpha fetoprotein (AFP) Levels in Normal Infants. Pediatr Res. 1981;15:50–52. PubMed

Lee PI, Chang MH, Chen DS, Lee CY. Serum α-fetoprotein levels in normal infants: a reappraisal of regression analysis and sex difference. J Pediatr Gastroenterol Nutr. 1989;8:19–25. PubMed

Bergman AJIW, van den Berg IET, Brink W, Poll-The BT, van Amstel P, Berger R. Spectrum of Mutations in the Fumarylacetoacetate Hydrolase Gene of Tyrosinemia Type I Patients in Northwestern Europe and Mediterranean Countries. Hum Mutat. 1998;12:19–26. PubMed

Halvorsen S. In: Inborn Metabolic diseases. 1. Fernandes J, Saudubray J-M, Tada K, editor. Springer, Berlin; 1990. Tyrosinemia; pp. 199–209.

Van Spronsen FJ, Thomasse Y, Smit GPA, Leonard JV, Clayton PT, Fidler V, Berger R, Heymans HAS. Hereditary Tyrosinemia Type I: A New Clinical Classification with Difference in Prognosis on Dietary Treatment. Hepatology. 1994;20:1187–1191. PubMed

Dursun A, Ozgül RK, Sivri S, Tokatli A, Güzel A, Mesci L, Kilic M, Alifendiolglu D, Ozcay F, Gündüz M, Coskun T. Mutation Spectrum of Fumarylacetoacetase Gene amd Clinical Aspects of Tyrosinemia Type I Disease. JIMD Rep. 2011;1:17–21. PubMed PMC

Kvittingen EA, Rootwelt H, Berger R, Brandtzaeg P. Self-induced correction of the genetic defect of tyrosinemia type I. J Clin Invest. 1994;94:1657–1661. PubMed PMC

Demers SI, Russo P, Lettre F, Tanguay RM. Frequent mutation inversion correlates with clinical severity in a genetic liver disease, hereditary tyrosinemia. Hum Pathol. 2003;34:1313–1320. PubMed

Wilson MG, Jungner G. Principles and practice of screening for disease. Public Health Pap. 1968;34:26–35.

Sander J, Janzen N, Terhardt M, Sander S, Gökcay G, Dermikol M, Ozer I, Peter M, Das AM. Monitoring tyrosinaemia type I: Blood spot test for nitisinone. Clin Chim Acta. 2011;412:134–138. PubMed

Orejuela D, Jorquera R, Bergeron A, Finegold MJ, Tanguay RM: Hepatic stress in hereditary tyrosinemia type 1 (HT1) activates the AKT survival pathway in the fah−/−knockout mice model.J Hepatol 2008, 2008(48):308–317. PubMed

Schlump JU, Perot C, Ketteler K, Schiff M, Mayatepek E, Wendel U, Spiekerkoetter U. Severe neurological crisis in a patient with hereditary tyrosinemia type I after interruption of NTBC. J Inherit Metab Dis. 2008;31(Suppl 2):223–225. PubMed

Schlune A, Thimm E, Herebian D, Spiekerkoetter U. Single dose NTBC-treatment of hereditary tyrosinemia type I. J Inherit Metab Dis. 2012;35:831–836. PubMed

Ahmad S, Teckman JH, Lueder GT. Corneal opacities associated with NTBC treatment. Am J Ophthalmol. 2002;134:266–268. PubMed

Gissen P, Preece MA, Willshaw HA, McKiernan PJ. Ophthalmic follow-up of patients with tyrosinaemia type I on NTBC. J Inherit Metab Dis. 2003;26:13–16. PubMed

Holme E. In: Physician’s Guide to the Treatment and Follow-Up of Metabolic Diseases. Blau N, Leonard J, Hoffmann GF, Clarke JTR, editor. Springer, Berlin; 2006. Disorders of tyrosine degradation; pp. 49–56.

Herebian D, Spiekerkoetter U, Lamshöft M, Thimm E, Laryea M, Mayatepek E. Liquid chromatography tandem mass spectrometry method for the quantification of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) in plasma of tyrosinemia type I patients. J Chromatogr B. 2009;877:1453–1459. PubMed

Prieto JA, Andrade F, Lage S, Aldamiz-Echevarria L. Comparison of plasma and dry blood spots as samples for the determination of nitisinone (NTBC) by high-performance liquid chromatography-tandem mass spectrometry. Study of the stability of the samples at different temperatures. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879:671–676. PubMed

la Marca G, Malvagia S, Materazzi S, Della Bona ML, Boenzi S, Martinelli D, Dionisi- Vici C. LC-MS/MS for simultaneous determination on a dried blood spots of multiple anaytes relevant for treatment monitoring of patients with tyrosinemia type I. Anal Chem. 2012;84:1184–1188. PubMed

Daly A, Gokmen–Ozel H, MacDonald A, Preece MA, Davies P, Chakrapani A, McKiernan P. Diurnal variation of phenylalanine concentrations in tyrosinaemia type 1: should we be concerned? J Hum Nutr Diet. 2012;25:111–116. PubMed

Hall MG, Wilks MF, Provan WM, Eksborg S, Lumholtz B. Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4 fluoromethylbenzpyl)-1,3-cyclohexanedione) and mestrione, inhibitors of 4 hydroxyphenyl pyruvate dioxigenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmocol. 2001;52:169–177. PubMed PMC

Mohan N, McKiernan P, Preece MA, Green A, Buckels J, Mayer AD, Kelly DA. Indication and outcome of liver tranplantation in tyrosinaemia type 1. Eur J Pediatr. 1999;158(Suppl 2):49–54. PubMed

Bartlett DC, Preece MA, Holme E, Lloyd C, Newsome PN, McKiernan PJ. Plasma succninylacetone is persistently raised after liver transplantation. J Inherit Metab Dis. 2013;36:15–20. PubMed

Pierik LJWM, van Spronsen FJ, Bijleveld CM, van Dael CM. Renal function in tyrosinaemia type I after liver transplantation: A long-term follow-up. J Inherit Metab Dis. 2005;28:871–876. PubMed

Santra S, Preece MA, Hulton S-A, McKiernan PJ. Renal tubular function in children with tyrosinaemia type I with nitisinone. J Inherit Metab Dis. 2008;31:399–402. PubMed

Mohamed S, Kambal MA, Al Jurayyan NA, Al-Nemri A, Babiker A, Hasanato R, Al-Jarallah AS. Tyrosinemia type 1: a rare and forgotten cause of reversible hypertrophic cardiomyopathy in infancy. BMC Res Notes. 2013;6:362. PubMed PMC

André N, Roquelaure B, Jubin V, Ovaert C. Successful treatment of severe cardiomyopathy with NTBC in a child with tyrosinaemia type I. J Inherit Metab Dis. 2005;28:103–106. PubMed

Arora N, Stumper O, Wright J, Kelly DA, McKiernan PJ: Cardiomyopathy in tyrosinaemia type I is common but usually benign.J Inherit Metab Dis 2006, 29:54–57. PubMed

Koelink CJL, Van Hasselt P, der Ploeg V, Van den Heuvel-Eibrink MM, Wijburg FA, Bijlefeld CM, Van Spronsen FJ. Tyrosinemia Typ I treated by NTBC: How does AFP predict liver cancer? Mol Genet Metab. 2006;89:310–315. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...