Clinical and genetic characteristics of two patients with tyrosinemia type 1 in Slovenia - A novel fumarylacetoacetate hydrolase (FAH) intronic disease-causing variant
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu kazuistiky, časopisecké články
PubMed
35242570
PubMed Central
PMC8856938
DOI
10.1016/j.ymgmr.2021.100836
PII: S2214-4269(21)00131-2
Knihovny.cz E-zdroje
- Klíčová slova
- AFP, alpha-fetoprotein, ALP, alkaline phosphatase, ALT, alanine transaminase, AST, aspartate transaminase, DBS, dried blood spot, Dried blood spot, FAH, fumarylacetoacetate hydrolase, Fumarylacetoacetate hydrolase, GGT, gamma glutamyl transferase, HT1, tyrosinemia type 1, INR, international normalized ratio, Intronic variant, MS/MS, tandem mass spectrometry, NBS, newborn screening, NTBC, nitisinone, Nitisinone, PTT, partial thromboplastin time, RF, reference range, SA, succinylacetone, Succinylacetone, Tyrosinemia,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Tyrosinemia type 1 (HT1) is an inborn error of tyrosine catabolism that leads to severe liver, kidney, and neurological dysfunction. Newborn screening (NBS) can enable a timely diagnosis and early initiation of treatment. We presented the follow up of the only two Slovenian patients diagnosed with HT1. Metabolic control was monitored by measuring tyrosine, phenylalanine and succinylacetone from dried blood spots (DBSs). Retrograde screening of HT1 was performed from DBSs taken at birth using tandem mass spectrometry. First patient was diagnosed at the age of 6 months in the asymptomatic phase due to an abnormal liver echogenicity, the other presented at 2.5 months with an acute liver failure and needed a liver transplantation. The first was a compound heterozygote for a novel FAH intronic variant c.607-21A>G and c.192G>T whereas the second was homozygous for c.192G>T. At the non-transplanted patient, 66% of tyrosine and 79% of phenylalanine measurements were in strict reference ranges of 200-400 μmol/L and >30 μmol/L, respectively, which resulted in a favorable cognitive outcome at 3.6 years. On retrograde screening, both patients had elevated SA levels; on the other hand, tyrosine was elevated only at one. We showed that non-coding regions should be analyzed when clinical and biochemical markers are characteristic of HT1. DBSs represent a convenient sample type for frequent amino acid monitoring. Retrograde diagnosis of HT1 was possible after more than three years of birth with SA as a primary marker, complemented by tyrosine.
Faculty of Medicine University of Ljubljana Ljubljana Slovenia
Unit for Clinical Dietetics University Children's Hospital UMC Ljubljana Ljubljana Slovenia
Zobrazit více v PubMed
Russo P.A., Mitchell G.A., Tanguay R.M. Tyrosinemia: a review. Pediatr. Dev. Pathol. 2001;4(3):212–221. doi: 10.1007/s100240010146. PubMed DOI
Angileri F., Bergeron A., Morrow G., Lettre F., Gray G., Hutchin T., et al. Geographical and ethnic distribution of mutations of the fumarylacetoacetate hydrolase gene in hereditary tyrosinemia type. JIMD Rep. 2015;19:43–58. doi: 10.1007/8904_2014_363. PubMed DOI PMC
Forget S., Patriquin H.B., Dubois J., Lafortune M., Merouani A., Paradis K., et al. The kidney in children with tyrosinemia: sonographic,CT and biochemical findings. Pediatr. Radiol. 1999;29(2):104–108. doi: 10.1007/s002470050551. PubMed DOI
Mitchell G., Larochelle J., Lambert M., Michaud J., Grenier A., Ogier H., et al. Neurologic crises in hereditary tyrosinemia. N. Engl. J. Med. 1990;322(7):432–437. doi: 10.1056/NEJM199002153220704. PubMed DOI
van Spronsen F.J., Thomasse Y., Smit G.P.A., Leonard J.V., Clayton P.T., Fidler V., et al. Hereditary tyrosinemia type I: a new clinical classification with difference in prognosis on dietary treatment. Hepatology. 1994;20(5):1187–1191. PubMed
Das A.M. Clinical utility of nitisinone for the treatment of hereditary tyrosinemia type-1 (HT-1) Appl. Clin. Genet. 2017;10:43–48. doi: 10.2147/TACG.S113310. PubMed DOI PMC
Masurel-Paulet A., Poggi-Bach J., Rolland M.-O., Bernard O., Guffon N., Dobbelaere D., et al. NTBC treatment in tyrosinaemia type I: long-term outcome in french patients. J. Inherit. Metab. Dis. 2008;31(1):81–87. doi: 10.1007/s10545-008-0793-1. PubMed DOI
Mohan N., McKiernan P., Preece M.A., Green A., Buckels J., Mayer A.D., et al. Indications and outcome of liver transplantation in tyrosinaemia type 1. Eur. J. Pediatr. 1999;158(Suppl 2):S49–S54. doi: 10.1007/pl00014321. PubMed DOI
Chinsky J.M., Singh R., Ficicioglu C., van Karnebeek C.D.M., Grompe M., Mitchell G., et al. Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet. Med. 2017;19(12) doi: 10.1038/gim.2017.101. PubMed DOI PMC
Stinton C., Geppert J., Freeman K., Clarke A., Johnson S., Fraser H., et al. Newborn screening for tyrosinemia type 1 using succinylacetone - a systematic review of test accuracy. Orphanet J. Rare Dis. 2017;12(1):48. doi: 10.1186/s13023-017-0599-z. PubMed DOI PMC
Spiekerkoetter U., Couce M.L., Das A.M., de Laet C., Dionisi-Vici C., Lund A.M., et al. Long-term safety and outcomes in hereditary tyrosinaemia type 1 with nitisinone treatment: a 15-year non-interventional, multicentre study. Lancet Diabetes Endocrinol. 2021;9(7):427–435. doi: 10.1016/S2213-8587(21)00092-9. PubMed DOI
de Laet C., Dionisi-Vici C., Leonard J.V., McKiernan P., Mitchell G., Monti L., et al. Recommendations for the management of tyrosinaemia type 1. Orphanet J. Rare Dis. 2013;8:8. doi: 10.1186/1750-1172-8-8. PubMed DOI PMC
Sander J., Janzen N., Terhardt M., Sander S., Gökcay G., Demirkol M., et al. Monitoring tyrosinaemia type I: blood spot test for nitisinone (NTBC) Clin. Chim. Acta. 2011;412(1–2):134–138. doi: 10.1016/j.cca.2010.09.027. PubMed DOI
van Ginkel W.G., Rodenburg I.L., Harding C.O., Hollak C.E.M., Heiner-Fokkema M.R., van Spronsen F.J. Long-term outcomes and practical considerations in the pharmacological management of tyrosinemia type 1. Pediatr. Drugs. 2019;21:413–426. doi: 10.1007/s40272-019-00364-4. PubMed DOI PMC
Blohm M.E.G., Vesterling-Hörner D., Calaminus G., Göbel U. Alpha 1 -fetoprotein (AFP) reference values in infants up to 2 years of age. Pediatr. Hematol. Oncol. 1998;15(2):135–142. doi: 10.3109/08880019809167228. PubMed DOI
Smon A., Cuk V., Brecelj J., Murko S., Groselj U., Zerjav Tansek M., et al. Comparison of liquid chromatography with tandem mass spectrometry and ion-exchange chromatography by post-column ninhydrin derivatization for amino acid monitoring. Clin. Chim. Acta. 2019;495:446–450. doi: 10.1016/j.cca.2019.05.007. PubMed DOI
Wechsler D. The Psychological Corporation; San Antonio, TX: 2002. WPPSI-III: Technical and Interpretative Manual.
Beery K.E., Beery N.A., Buktenica N.A. NCS Pearson; Minneapolis, MN: 2010. The Beery-Buktenica Developmental Test of Visual-motor Integration (Beery VMI) with Supplemental Developmental Tests of Visual Perception and Motor Coordination and Stepping Stones Age Norms: Administration, Scoring and Teaching Manual.
Harrison P.L., Oakland T. Third Edition (Manual) Western Psychological Services; Torrance, CA: 2015. Adaptive Behavior Assessment System.
Gioia G.A., Anseews K., Isquith P.K. PAR; Lutz, FL: 2003. Behavior Rating Inventory od Executive Function – Preschool Version. Professional Manual.
Achenbach, Thomas M., Rescorla Leslie. ASEBA; Burlington, Vt: 2000. Manual for the ASEBA Preschool Forms & Profiles: An Integrated System of Multi-informant Assessment.
Äärelä L., Hiltunen P., Soini T., Vuorela N., Huhtala H., Nevalainen P.I., et al. Type 1 tyrosinemia in Finland: a nationwide study. Orphanet J. Rare Dis. 2020;15(1):281. doi: 10.1186/s13023-020-01547-w. PubMed DOI PMC
Mayorandan S., Meyer U., Gokcay G., Segarra N.G., de Baulny H.O., van Spronsen F., et al. Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J. Rare Dis. 2014;9:107. doi: 10.1186/s13023-014-0107-7. PubMed DOI PMC
Couce M.L., Sánchez-Pintos P., Aldámiz-Echevarría L., Vitoria I., Navas V., Martín-Hernández E., et al. Evolution of tyrosinemia type 1 disease in patients treated with nitisinone in Spain. Medicine (Baltimore) 2019;98(39) doi: 10.1097/MD.0000000000017303. PubMed DOI PMC
Rootwelt H., Høie K., Berger R., Kvittingen E.A. Fumarylacetoacetase mutations in tyrosinaemia type I. Hum. Mutat. 1996;7(3):239–243. doi: 10.1002/(SICI)1098-1004(1996)7:3<239::AID-HUMU8>3.0.CO;2-5. PubMed DOI
Larochelle J., Alvarez F., Bussières J.-F., Chevalier I., Dallaire L., Dubois J., et al. Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Québec. Mol. Genet. Metab. 2012;107(1–2):49–54. doi: 10.1016/j.ymgme.2012.05.022. PubMed DOI
la Marca G., Malvagia S., Pasquini E., Cavicchi C., Morrone A., Ciani F. Newborn screening for tyrosinemia type I: further evidence that succinylacetone determination on blood spot is essential. JIMD Rep. 2011;1:107–109. doi: 10.1007/8904_2011_24. PubMed DOI PMC
Mohamed S., Kambal M.A., Al Jurayyan N.A., Al-Nemri A., Babiker A., Hasanato R., et al. Tyrosinemia type 1: a rare and forgotten cause of reversible hypertrophic cardiomyopathy in infancy. BMC Res. Notes. 2013;6:362. doi: 10.1186/1756-0500-6-362. PubMed DOI PMC
Arora N., Stumper O., Wright J., Kelly D.A., McKiernan P.J. Cardiomyopathy in tyrosinaemia type I is common but usually benign. J. Inherit. Metab. Dis. 2006;29(1):54–57. doi: 10.1007/s10545-006-0203-5. PubMed DOI
Heard J.M., Vrinten C., Schlander M., Bellettato C.M., van Lingen C., Scarpa M., MetabERN Collaboration Group. MetabERN Collaboration Group Availability, accessibility and delivery to patients of the 28 orphan medicines approved by the european medicine agency for hereditary metabolic diseases in the MetabERN network. Orphanet J. Rare Dis. 2020;15(1):3. doi: 10.1186/s13023-019-1280-5. PubMed DOI PMC
Simoncelli M., Samson J., Bussières J.F., Lacroix J., Dorais M., Battista R., et al. Cost-consequence analysis of nitisinone for treatment of tyrosinemia type I. Can. J. Hosp. Pharm. 2015;68(3):210–217. PubMed PMC
van Vliet K., van Ginkel W.G., van Dam E., de Blaauw P., Koehorst M., Kingma H.A., et al. Dried blood spot versus venous blood sampling for phenylalanine and tyrosine. Orphanet J. Rare Dis. 2020;15(1):82. doi: 10.1186/s13023-020-1343-7. PubMed DOI PMC
Groselj U., Murko S., Zerjav Tansek M., Kovac J., Trampus Bakija A., Repic Lampret B., et al. Comparison of tandem mass spectrometry and amino acid analyzer for phenylalanine and tyrosine monitoring–implications for clinical management of patients with hyperphenylalaninemia. Clin. Biochem. 2015;48(1–2):14–18. doi: 10.1016/j.clinbiochem.2014.09.014. PubMed DOI
Wilson C.J., Van Wyk K.G., Leonard J.V., Clayton P.T. Phenylalanine supplementation improves the phenylalanine profile in tyrosinaemia. J. Inherit. Metab. Dis. 2000;23(7):677–683. doi: 10.1023/a:1005666426079. PubMed DOI
van Vliet D., van Dam E., van Rijn M., Derks T.G., Venema-Liefaard G., Hitzert M.M., et al. Infants with tyrosinemia type 1: should phenylalanine be supplemented? JIMD Rep. 2015;18:117–124. doi: 10.1007/8904_2014_358. PubMed DOI PMC