Double Trisomy 16 and 22 Clinically Mimic Partial Hydatidiform Mole in a Case of Subsequent Pregnancy Loss
Jazyk angličtina Země Česko Médium print
Typ dokumentu kazuistiky, časopisecké články
PubMed
37888974
PubMed Central
PMC10669944
DOI
10.33549/physiolres.935174
PII: 935174
Knihovny.cz E-zdroje
- MeSH
- DNA MeSH
- dospělí MeSH
- lidé MeSH
- lidské chromozomy, pár 16 MeSH
- mola hydatidosa * diagnóza genetika MeSH
- mozaicismus MeSH
- nádory dělohy * diagnóza genetika MeSH
- samovolný potrat * diagnóza genetika MeSH
- těhotenství MeSH
- trizomie diagnóza genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- DNA MeSH
A case of double trisomy 16 and 22 in the second pregnancy loss is presented. DNA analyses (short tandem repeats genotyping) of miscarriage specimen was indicated because of ultrasound suspicion of partial hydatidiform mole. After the partial hydatidiform mole exclusion, further DNA analyses focused on the most common aneuploidies causing pregnancy loss, detected double trisomy 16 and 22 in the product of conception. The couple was referred to clinical genetic consultation and normal parental karyotypes were proved. For further explanatory purposes, archived material from the first pregnancy loss was analyzed and trisomy of chromosome 18 was detected. By comparison of allelic profiles of the mother, father, and both losses, the maternal origin of all aneuploidies was proven what can be attributed to frequent meiosis errors, probably due to advanced maternal age (44 years at the first loss and 45 years at the second loss). In conclusion, aneuploidies can mimic partial hydatidiform mole. Genetic analysis is helpful on the one hand to rule out partial hydatidiform mole and on the other hand to identify aneuploidies and in this way to determine the cause of miscarriage.
Zobrazit více v PubMed
Malova J, Bohmer D, Luha J, Pastorakova A, Cierna Z, Braxatorisova T. Single umbilical artery and reproduction losses in Slovak population: relation to karyotype and fetal anomalies. Bratisl Lek Listy. 2018;19:330–334. doi: 10.4149/BLL_2018_062. PubMed DOI
Diego-Alvarez D, Ramos-Corrales C, Garcia-Hoyos M, Bustamante-Aragones A, Cantalapiedra D, Diaz-Recasens J, Vallespin-Garcia E, Ayuso C, Lorda-Sanchez I. Double trisomy in spontaneous miscarriages: cytogenetic and molecular approach. Hum Reprod. 2006;21:958–966. doi: 10.1093/humrep/dei406. PubMed DOI
Subramaniyam S, Pulijaal VR, Mathew S. Double and multiple chromosomal aneuploidies in spontaneous abortions: A single institutional experience. J Hum Reprod Sci. 2014;7:262–268. doi: 10.4103/0974-1208.147494. PubMed DOI PMC
Gergely L, Petrovic R, Feketova Z, Klimova D, Danihel L, Mosna K, Mrazova H, Korbel M, Repiska V, Priscakova P. Partial hydatidiform moles with unclear histopathological profile - importance of genetic diagnostics. Ceska Gynekol. 2021;86:381–386. doi: 10.48095/cccg2021381. PubMed DOI
Papas RS, Kutteh WH. A new algorithm for the evaluation of recurrent pregnancy loss redefining unexplained miscarriage: review of current guidelines. Curr Opin Obstet Gynecol. 2020;32:371–379. doi: 10.1097/GCO.0000000000000647. PubMed DOI
McClelland LS, Allen SK, Larkins SA, Hamilton SJ, Marton T, Cox PM, Hargitai B, Johnston EH, Morgan C, Hardy G. Implementation and experience of an alternative QF-PCR and MLPA diagnostic strategy to detect chromosomal abnormalities in fetal and neonatal pathology samples. Pediatr Dev Pathol. 2011;14:460–468. doi: 10.2350/11-01-0971-OA.1. PubMed DOI
Zou G, Zhang J, Li XW, He L, He G, Duan T. Quantitative fluorescent polymerase chain reaction to detect chromosomal anomalies in spontaneous abortion. Int J Gynaecol Obstet. 2008;103:237–240. doi: 10.1016/j.ijgo.2008.07.014. PubMed DOI
Russo R, Sessa AM, Fumo R, Gaeta S. Chromosomal anomalies in early spontaneous abortions: interphase FISH analysis on 855 FFPE first trimester abortions. Prenat Diagn. 2016;36:186–191. doi: 10.1002/pd.4768. PubMed DOI