Enhancing Dental Applications: A Novel Approach for Incorporating Bioactive Substances into Textile Threads
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37896247
PubMed Central
PMC10609678
DOI
10.3390/pharmaceutics15102487
PII: pharmaceutics15102487
Knihovny.cz E-zdroje
- Klíčová slova
- coating of active substances, hyaluronic acid, octenidine dihydrochloride, threads,
- Publikační typ
- časopisecké články MeSH
In the realm of surgical and dental applications, hyaluronic acid (HA) braided threads show significant therapeutic potential due to their incorporation of pharmaceutical active ingredients. This study primarily focuses on resolving the crucial challenge of devising a deposition method that can ensure both precision and uniformity in the content of the active ingredient Octenidine dihydrochloride (OCT) within each segment of the threads. Our objective in this study was to develop a continuous deposition method for OCT onto a braided thread composed of 24 hyaluronic acid-based fibers, aiming for a specific OCT content of 0.125 µg/mm, while maintaining a maximum allowable deviation of ±15% in OCT content. The motivation behind designing this novel method stemmed from the necessity of employing a volatile solvent for the active agent. Conventional wetting methods proved unsuitable due to fluctuations in the solution's concentration during deposition, and alternative methods known to us demanded intricate technical implementations. The newly introduced method offers distinct advantages, including its online processing speed, scalability potential, and cost-efficiency of the active agent solution. Additionally, it minimizes the impact on the natural polymer thread, preserving energy by obviating the need for complete thread saturation. Our research and precise apparatus development resulted in achieving the desired thread properties, with an OCT content of (1.51 ± 0.09) µg per 12 mm thread piece. These findings not only validate the suitability of this innovative method for depositing active agents but also extend its potential applicability beyond dental care.
Zobrazit více v PubMed
Alshomer F., Madhavan A., Pathan O., Wen-Hui S. Bioactive Sutures: A review of advances in surgical suture functionalisation. Curr. Med. Chem. 2017;24:215–223. doi: 10.2174/0929867324666161118141724. PubMed DOI
Obermeier A., Schneider J., Fohr P., Wehner S., Kühn K., Stemberger A., Schieker M., Burgkart R. In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine. BMC Microbiol. 2015;15:186. doi: 10.1186/s12866-015-0523-4. PubMed DOI PMC
Langa G.P.J., De Almeida Dantas P.P., Lemus G.M.R., Benítez C., Mauricio J., Muniz F.W.M.G. Effectiveness of interdental cleaning devices with active substances: A systematic review. Clin. Oral Investig. 2022;26:2253–2267. doi: 10.1007/s00784-021-04327-3. PubMed DOI
Moroni L., Schotel R., Sohier J., De Wijn J., Van Blitterswijk C.A. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials. 2006;27:5918–5926. doi: 10.1016/j.biomaterials.2006.08.015. PubMed DOI
Zapotocky V., Pospisilova M., Janouchová K., Švadlák D., Batova J., Sogorkova J., Čepa M., Běťák J., Štěpánková V., Šuláková R., et al. Fabrication of biodegradable textile scaffold based on hydrophobized hyaluronic acid. Int. J. Biol. Macromol. 2017;95:903–909. doi: 10.1016/j.ijbiomac.2016.10.076. PubMed DOI
Gulati R., Sharma S., Sharma R.K. Antimicrobial textile: Recent developments and functional perspective. Polym. Bull. 2021;79:5747–5771. doi: 10.1007/s00289-021-03826-3. PubMed DOI PMC
Uddin A.J. Technical Textile Yarns. Elsevier; Amsterdam, The Netherlands: 2010. Coatings for technical textile yarns; pp. 140–184. DOI
Obermeier A., Schneider J., Wehner S., Matl F.D., Schieker M., Von Eisenhart-Rothe R., Stemberger A., Burgkart R. Novel high efficient coatings for Anti-Microbial surgical sutures using chlorhexidine in fatty acid Slow-Release carrier systems. PLoS ONE. 2014;9:e101426. doi: 10.1371/journal.pone.0101426. PubMed DOI PMC
Tang X., Xiong Y. Dip-coating for fibrous materials: Mechanism, methods and applications. J. Sol-Gel Sci. Technol. 2016;81:378–404. doi: 10.1007/s10971-016-4197-7. DOI
Arrabiyeh P.A., May D., Eckrich M., Dlugaj A.M. An overview on current manufacturing technologies: Processing continuous rovings impregnated with thermoset resin. Polym. Compos. 2021;42:5630–5655. doi: 10.1002/pc.26274. DOI
Chatterjee K., Tabor J., Ghosh T.K. Electrically conductive coatings for Fiber-Based E-Textiles. Fibers. 2019;7:51. doi: 10.3390/fib7060051. DOI
Link A., Haag H., Michel T., Denzinger M., Wendel H.P., Schlensak C., Krajewski S. Development of a novel Polymer-Based mRNA coating for surgical suture to enhance wound healing. Coatings. 2019;9:374. doi: 10.3390/coatings9060374. DOI
Zhou Y., Soltani S., Li B.M., Wu Y., Kim I., Soewardiman H., Werner D.H., Jur J.S. Direct-Write spray coating of a Full-Duplex antenna for E-Textile applications. Micromachines. 2020;11:1056. doi: 10.3390/mi11121056. PubMed DOI PMC
Sadanandan K.S., Bacon A., Shin D., Alkhalifa S., Russo S., Craciun M.F., Neves A.I.S. Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles. J. Phys. Mater. 2020;4:014004. doi: 10.1088/2515-7639/abc632. DOI
Zhang H., Liu Y., Kuwata M., Bilotti E., Peijs T. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. Part A-Appl. Sci. Manuf. 2015;70:102–110. doi: 10.1016/j.compositesa.2014.11.029. DOI
Ivanova T., Baier G., Landfester K., Musin E., Al-Bataineh S.A., Cameron D., Homola T., Whittle J.D., Sillanpää M. Attachment of Poly(l-lactide) Nanoparticles to Plasma-Treated Non-Woven Polymer Fabrics Using Inkjet Printing. Macromol. Biosci. 2015;15:1274–1282. doi: 10.1002/mabi.201500067. PubMed DOI
Shahariar H., Kim I., Soewardiman H., Jur J.S. Inkjet printing of reactive silver ink on textiles. ACS Appl. Mater. Interfaces. 2019;11:6208–6216. doi: 10.1021/acsami.8b18231. PubMed DOI
Möhl C., Weimer T., Caliskan M., Hager T., Baz S., Bauder H., Stegmaier T., Wunderlich W., Gresser G.T. Flax Fibre Yarn Coated with Lignin from Renewable Sources for Composites. Polymers. 2022;14:4060. doi: 10.3390/polym14194060. PubMed DOI PMC
Naebe M., Haque A.N.M.A., Haji A. Plasma-Assisted Antimicrobial Finishing of Textiles: A review. Engineering. 2022;12:145–163. doi: 10.1016/j.eng.2021.01.011. DOI
Zhou F., Gong R., Porat I. Nanocoating on filaments by electrospinning. Surf. Coat. Technol. 2009;204:621–628. doi: 10.1016/j.surfcoat.2009.08.053. DOI
Mao N., Ye J., Quan Z., Zhang H., Wu D., Qin X., Wang R., Yu J. Tree-like structure driven water transfer in 1D fiber assemblies for Functional Moisture-Wicking Fabrics. Mater. Des. 2020;186:108305. doi: 10.1016/j.matdes.2019.108305. DOI
Ravandi S.A.H., Sanatgar R.H., Dabirian F. Wicking phenomenon in Nanofiber-Coated filament yarns. J. Eng. Fibers Fabr. 2013;8:155892501300800. doi: 10.1177/155892501300800302. DOI
De Smet D., Uyttendaele W., Vanneste M. Bio-Based 2K PU coating for durable textile applications. Coatings. 2022;12:169. doi: 10.3390/coatings12020169. DOI
Horáčková L., Chmelíčková K., Hermannová M., Pitucha T., Vágnerová H., Židek O., Velebný V., Chmelař J. Water-insoluble fibres, threads, and fabrics from lauroyl derivatives of hyaluronan. Int. J. Biol. Macromol. 2023;234:123654. doi: 10.1016/j.ijbiomac.2023.123654. PubMed DOI
Kramer A., Dissemond J., Kim S., Willy C., Mayer D., Papke R., Tuchmann F., Assadian O. Consensus on wound antisepsis: Update 2018. Ski. Pharmacol. Physiol. 2017;31:28–58. doi: 10.1159/000481545. PubMed DOI
Litwiniuk M., Krejner A., Speyrer M., Gauto A.R., Grzela T. Hyaluronic acid in inflammation and tissue regeneration. [(accessed on 11 September 2023)];Wounds. 2016 28:78–88. Available online: https://pubmed.ncbi.nlm.nih.gov/26978861. PubMed
Pitucha T., Suchánek J., Chmelíčková K., Horáčková L., Matonohová J., Medek T., Rosa J., Šuláková R., Grusová L., Buffa R., et al. Dental Preparation Made of Hyaluronic Acid Fibres with Adjustable Biodegradability. Pat. No. CZ308980. 2020 January 24;
Erkoc P., Ulucan-Karnak F. Nanotechnology-Based antimicrobial and antiviral surface coating strategies. Prosthesis. 2021;3:25–52. doi: 10.3390/prosthesis3010005. DOI
Arras K.O. An Introduction to Error Propagation: Derivation, Meaning and Examples of Equation Cy = Fx Cx FxT. ETH Zurich; Zurich, Switzerland: 1998. DOI