Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors

. 2023 Oct 18 ; 15 (20) : . [epub] 20231018

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37896384

The polymerization of pyrrole in the frozen state with the presence of organic dyes (methyl orange (MO) and Acid Blue 25 (AB)) has proven to produce polypyrrole (PPy) nanostructures. Herein, we explore the electrochemical properties of PPy prepared under frozen-state conditions (-24 °C) with and without the presence of organic dyes. The electroactivity of PPy prepared with MO and AB significantly increased in all electrolytic media with a capacitance higher than this of the PPy prepared at room temperature. The highest capacitance (1914 F g-1) was obtained for PPy-MO in 0.2 M HCl solution. The impedance spectra of PPy showed a decrease in charge transfer resistance when the dyes were present. This indicates a conductivity increase of PPy. Improved electrochemical stability was observed for PPy, PPy-MO, and PPy-AB prepared at -24 °C, wherein a steady gain of capacitance was maintained during 5000 potential cycling. In addition, a PPy-based supercapacitor device was fabricated to demonstrate the energy storage characteristics of PPy, where it showed good capacitive behavior and stability. Overall, frozen-state polymerized PPy posed an impressive capacitive performance for flexible supercapacitors.

Zobrazit více v PubMed

Yang Y., Zhu T., Shen L., Liu Y., Zhang D., Zheng B., Gong K., Zheng J., Gong X. Recent progress in the all-solid-state flexible supercapacitors. SmartMat. 2022;3:349–383. doi: 10.1002/smm2.1103. DOI

Tadesse M.G., Lübben J.F. Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications. Gels. 2023;9:106. doi: 10.3390/gels9020106. PubMed DOI PMC

Zhang R., Zhang W., Shi M., Li H., Ma L., Niu H. Morphology controllable synthesis of heteroatoms-doped carbon materials for high-performance flexible supercapacitor. Dyes Pigment. 2022;199:109968. doi: 10.1016/j.dyepig.2021.109968. DOI

Sun Y., Yang Y., Fan L., Zheng W., Ye D., Xu J. Polypyrrole/SnCl2 modified bacterial cellulose electrodes with high areal capacitance for flexible supercapacitors. Carbohydr. Polym. 2022;292:119679. doi: 10.1016/j.carbpol.2022.119679. PubMed DOI

Wang W., Cao J., Yu J., Tian F., Luo X., Hao Y., Huang J., Wang F., Zhou W., Xu J., et al. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes. Polymers. 2023;15:1856. doi: 10.3390/polym15081856. PubMed DOI PMC

Yasami S., Mazinani S., Abdouss M. Developed composites materials for flexible supercapacitors electrode: “Recent progress & future aspects”. J. Energy Storage. 2023;72:108807. doi: 10.1016/j.est.2023.108807. DOI

Chang X., Lin C.-W., Huang A., El-Kady M.F., Kaner R.B. Molecular Engineering of Hierarchical Conducting Polymer Composites for Highly Stable Supercapacitors. Nano Lett. 2023;23:3317–3325. doi: 10.1021/acs.nanolett.3c00284. PubMed DOI

Wang S., Yu X., Li N., Zhang S., Liu C., Xi M., Iqbal O., Ali S., Wang Z. Enhancing energy storage capacity of supercapacitors via constructing a porous PPy/carbon cloth electrode by a template-assisted method. J. Energy Storage. 2023;72:108312. doi: 10.1016/j.est.2023.108312. DOI

Liu J., Xu D., Liu Q., Li S., Wang D., Zheng Z. Structural evolution of carbon foam and its effect on polypyrrole/carbon foam composite electrodes in supercapacitors. Compos. Part A Appl. Sci. Manuf. 2023;174:107734. doi: 10.1016/j.compositesa.2023.107734. DOI

Dianatdar A., Mukherjee A., Bose R.K. Oxidative chemical vapor deposition of polypyrrole onto carbon fabric for flexible supercapacitive electrode material. Synth. Met. 2023;298:117444. doi: 10.1016/j.synthmet.2023.117444. DOI

Ma X., Shi X., Wang Y., Xiong W., Xiong C., Yang J., You L., Wang S. Stretchable porous conductive hydrogel films prepared by emulsion template method as flexible sensors. Colloids Surf. A Physicochem. Eng. Asp. 2023;676:132272. doi: 10.1016/j.colsurfa.2023.132272. DOI

Ren H., Sun R., Jin Y., Xu M., Pei Y., Wang Q., Yan M. Electrochemical Properties of Multi-Morphology Polypyrrole Electrode Materials Depended on Template Agents. ChemistrySelect. 2023;8:e202302155. doi: 10.1002/slct.202302155. DOI

Naseeb I., Almashhadani H.A., Macadangdang R.R., Jr., Ullah S., Khan M.F., Kamran M., Qureshi N., Naseeb F. Interfacial polymerization synthesis of polypyrrole and sodium metavanadate (PPy/NaVO3) composite as an excellent performance electrode for supercapacitors. Results Chem. 2022;4:100446. doi: 10.1016/j.rechem.2022.100446. DOI

Sun Y., Jia D., Zhang A., Tian J., Zheng Y., Zhao W., Cui L., Liu J. Synthesis of polypyrrole coated melamine foam by in-situ interfacial polymerization method for highly compressible and flexible supercapacitor. J. Colloid Interface Sci. 2019;557:617–627. doi: 10.1016/j.jcis.2019.09.065. PubMed DOI

Masri K., Kalaleh H.A., Alhassan A. Fabrication of Sensitive and Selective Ammonia Gas Sensors Based on Pyrrole Interfacial Polymerization. J. Electron. Mater. 2019;48:5967–5974. doi: 10.1007/s11664-019-07338-9. DOI

Namhongsa M., Daranarong D., Sriyai M., Molloy R., Ross S., Ross G.M., Tuantranont A., Tocharus J., Sivasinprasasn S., Topham P.D., et al. Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning. Biomacromolecules. 2022;23:4532–4546. doi: 10.1021/acs.biomac.2c00626. PubMed DOI

Wang X., Yu G., Zhang J., Yu M., Ramakrishna S., Long Y. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021;115:100704. doi: 10.1016/j.pmatsci.2020.100704. DOI

Yu M., Li Y., Xu S., Li J., Wang L. Growing spherical polypyrrole nanoparticles onto the magnetic carbon aerogel for improving electrochemical performance for supercapacitors. J. Porous Mater. 2021;28:1999–2011. doi: 10.1007/s10934-021-01115-y. DOI

Yue T., Douka A.I., Qi K., Qiu Y., Guo X., Xia B.Y. Flexible and hollow polypyrrole foam with high loading of metal–organic framework nanowires for wearable supercapacitors. J. Mater. Chem. A. 2021;9:21799–21806. doi: 10.1039/D1TA05330B. DOI

Xue J., Yang Q., Guan R., Shen Q., Liu X., Jia H., Li Q. High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Mater. Chem. Phys. 2020;256:123591. doi: 10.1016/j.matchemphys.2020.123591. DOI

Lima R.M.A.P., dos Reis G.S., Lassi U., Lima E.C., Dotto G.L., de Oliveira H.P. Sustainable Supercapacitors Based on Polypyrrole-Doped Activated Biochar from Wood Waste Electrodes. C. 2023;9:59. doi: 10.3390/c9020059. DOI

Xiong Z., Fang Z., Ding Z., Li G., Zhou J., Chen K., Yang D., Qiu X. A Novel Strategy to Enhance the Electrochemical Performance of Polypyrrole-Coated Paper-Based Supercapacitor. Macromol. Mater. Eng. 2022;307:2200359. doi: 10.1002/mame.202200359. DOI

Zhang S., Zhao B., Zhang D., Yang M., Huang X., Han L., Chen K., Li X., Pang R., Shang Y., et al. Conductive hydrogels incorporating carbon nanoparticles: A review of synthesis, performance and applications. Particuology. 2023;83:212–231. doi: 10.1016/j.partic.2023.06.002. DOI

Shen C., Chen Y., Feng B., Chi H., Zhang H. Polypyrrole Hollow Nanotubes Loaded with Au and Fe3O4 Nanoparticles for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Chem. Res. Chin. Univ. 2022;38:941–948. doi: 10.1007/s40242-022-2120-z. DOI

Wei F., Zhong Y., Luo H., Wu Y., Fu J., He Q., Cheng J., Na J., Yamauchi Y., Liu S. Soft template-mediated coupling construction of sandwiched mesoporous PPy/Ag nanoplates for rapid and selective NH3 sensing. J. Mater. Chem. A. 2021;9:8308–8316. doi: 10.1039/D1TA01110C. DOI

Zhang L., Zhao C., Wang G., Suo H., He D., Yang S., Ding J. In-situ fabrication of carbon cloth-supported polypyrrole-platinum nanosheets for the electrochemical detection of ammonia–nitrogen. Mater. Lett. 2021;305:130767. doi: 10.1016/j.matlet.2021.130767. DOI

Murugesan B., Pandiyan N., Arumugam M., Sonamuthu J., Samayanan S., Yurong C., Juming Y., Mahalingam S. Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering. Appl. Surf. Sci. 2020;510:145403. doi: 10.1016/j.apsusc.2020.145403. DOI

Malere C.P.R., Donati B., Eras N., Silva V.A., Lona L.F. Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic–inorganic nanocomposite of polypyrrole/kaolinite. J. Appl. Polym. Sci. 2021;139:52023. doi: 10.1002/app.52023. DOI

Mrah L., Meghabar R. Influence of clay modification process in polypyrrole-layered silicate nanocomposite. SN Appl. Sci. 2020;2:659. doi: 10.1007/s42452-020-2338-7. DOI

Fu X., Wang J.K., Ramírez-Pérez A.C., Choong C., Lisak G. Flexible conducting polymer-based cellulose substrates for on-skin applications. Mater. Sci. Eng. C. 2020;108:110392. doi: 10.1016/j.msec.2019.110392. PubMed DOI

Ruan Y., Chen L., Cui L., An Q. PPy-Modified Prussian Blue Cathode Materials for Low-Cost and Cycling-Stable Aqueous Zinc-Based Hybrid Battery. Coatings. 2022;12:779. doi: 10.3390/coatings12060779. DOI

Heybet E.N., Ugraskan V., Isik B., Yazici O. Adsorption of methylene blue dye on sodium alginate/polypyrrole nanotube composites. Int. J. Biol. Macromol. 2021;193:88–99. doi: 10.1016/j.ijbiomac.2021.10.084. PubMed DOI

Ahmed S., Ahmed A., Basha D.B., Hussain S., Uddin I., Gondal M.A. Critical review on recent developments in conducting polymer nanocomposites for supercapacitors. Synth. Met. 2023;295:117326. doi: 10.1016/j.synthmet.2023.117326. DOI

Han Y., Dai L. Conducting Polymers for Flexible Supercapacitors. Macromol. Chem. Phys. 2019;220:1800355. doi: 10.1002/macp.201800355. DOI

Minisy I.M., Acharya U., Kobera L., Trchová M., Unterweger C., Breitenbach S., Brus J., Pfleger J., Stejskal J., Bober P. Highly conducting 1-D polypyrrole prepared in the presence of safranin. J. Mater. Chem. C. 2020;8:12140–12147. doi: 10.1039/D0TC02838J. DOI

Minisy I.M., Bober P. Frozen-State Polymerization as a Tool in Conductivity Enhancement of Polypyrrole. Macromol. Rapid Commun. 2020;41:2000364. doi: 10.1002/marc.202000364. PubMed DOI

Minisy I.M., Bober P., Šeděnková I., Stejskal J. Methyl red dye in the tuning of polypyrrole conductivity. Polymer. 2020;207:122854. doi: 10.1016/j.polymer.2020.122854. DOI

Minisy I.M., Bober P., Acharya U., Trchová M., Hromádková J., Pfleger J., Stejskal J. Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer. 2019;174:11–17. doi: 10.1016/j.polymer.2019.04.045. DOI

Tumacder D.V., Morávková Z., Minisy I.M., Hromádková J., Bober P. Electropolymerized polypyrrole/safranin-O films: Capacitance enhancement. Polymer. 2021;230:124099. doi: 10.1016/j.polymer.2021.124099. DOI

Roohi Z., Mighri F., Zhang Z. A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment. Polymers. 2022;14:4693. doi: 10.3390/polym14214693. PubMed DOI PMC

Li Y., Bober P., Trchová M., Stejskal J. Polypyrrole prepared in the presence of methyl orange and ethyl orange: Nanotubes versus globules in conductivity enhancement. J. Mater. Chem. C. 2017;17:4236–4245. doi: 10.1039/C7TC00206H. DOI

Hryniewicz B.M., Lima R.V., Wolfart F., Vidotti M. Influence of the pH on the electrochemical synthesis of polypyrrole nanotubes and the supercapacitive performance evaluation. Electrochim. Acta. 2019;293:447–457. doi: 10.1016/j.electacta.2018.09.200. DOI

Bober P., Li Y., Acharya U., Panthi Y., Pfleger J., Humpolíček P., Trchová M., Stejskal J. Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synth. Met. 2018;237:40–49. doi: 10.1016/j.synthmet.2018.01.010. DOI

Tumacder D.V., Morávková Z., Bober P. Enhanced electrochemical performance of electrosynthesized fibrillar polypyrrole film. Mater. Lett. 2022;308:131295. doi: 10.1016/j.matlet.2021.131295. DOI

Tumacder D.V., Morávková Z., Konefał M., Salapare H.S., Guittard F., Bober P. Effect of Acid Blue dyes on the electrochemical capacitance of polypyrrole. Mater. Res. Bull. 2023;168:112455. doi: 10.1016/j.materresbull.2023.112455. DOI

Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI

Stejskal J., Trchová M., Bober P., Morávková Z., Kopecký D., Vrňata M., Prokeš J., Varga M., Watzlová E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI

Abdul Bashid H.A., Lim H.N., Kamaruzaman S., Rashid S.A., Yunus R., Huang N.M., Yin C.Y., Rahman M.M., Altarawneh M., Jiang Z.T., et al. Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor. Nanoscale Res. Lett. 2017;12:246. doi: 10.1186/s11671-017-2010-3. PubMed DOI PMC

Ramachandran R., Wang F. Supercapacitors—Theoretical and Practical Solutions. InTech Open; London, UK: 2017. Electrochemical Capacitor Performance: Influence of Aqueous Electrolytes. DOI

Yunita A., Farma R., Awitdrus A., Apriyani I. The effect of various electrolyte solutions on the electrochemical properties of the carbon electrodes of supercapacitor cells based on biomass waste. Mater. Today Proc. 2023;87:246–252. doi: 10.1016/j.matpr.2023.03.102. DOI

Pal B., Yang S., Ramesh S., Thangadurai V., Jose R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019;1:3807–3835. doi: 10.1039/C9NA00374F. PubMed DOI PMC

Wang Y., Wang H., Zhang W., Fei G., Shu K., Sun L., Tian S., Niu H., Wang M., Hu G., et al. A Simple Route to Fabricate Ultralong and Uniform Polypyrrole Nanowires with High Electrochemical Capacitance for Supercapacitor Electrodes. ACS Appl. Polym. Mater. 2023;5:1254–1263. doi: 10.1021/acsapm.2c01731. DOI

Mi H., Zhang X., Ye X., Yang S. Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors. J. Power Sources. 2008;176:403–409. doi: 10.1016/j.jpowsour.2007.10.070. DOI

Mei B.A., Lau J., Lin T., Tolbert S.H., Dunn B.S., Pilon L. Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage. J. Phys. Chem. C. 2018;122:24499–24511. doi: 10.1021/acs.jpcc.8b05241. DOI

Harrington D.A., Driessche P.V. Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim. Acta. 2011;56:8005–8013. doi: 10.1016/j.electacta.2011.01.067. DOI

Zhu A., Sun X., Gao X., Wang J., Zhao N., Sha J. Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. J. Electroanal. Chem. 2019;855:113627. doi: 10.1016/j.jelechem.2019.113627. DOI

Ebrahim S.M., Latif M.A.-E., Gad A., Soliman M. Cyclic voltammetry and impedance studies of electrodeposited polypyrrole nanoparticles doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt. Thin Solid Films. 2010;518:4100–4105. doi: 10.1016/j.tsf.2009.10.167. DOI

Policastro S.A., Anderson R.M., Hangarter C.M., Arcari A., Iezzi E.B. Incorporating Physics-Based Models into Equivalent Circuit Analysis of EIS Data from Organic Coatings. Coatings. 2023;13:1285. doi: 10.3390/coatings13071285. DOI

Morávková Z., Taboubi O., Minisy I.M., Bober P. The evolution of the molecular structure of polypyrrole during chemical polymerization. Synth. Met. 2021;271:116608. doi: 10.1016/j.synthmet.2020.116608. DOI

Hou Y., Zhang L., Chen L.Y., Liu P., Hirata A., Chen M.W. Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold. Phys. Chem. Chem. Phys. 2014;16:3523–3528. doi: 10.1039/c3cp54497d. PubMed DOI

Zhu J., Xu Y., Wang J., Wang J., Bai Y., Du X. Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor. Phys. Chem. Chem. Phys. 2015;17:19885–19894. doi: 10.1039/C5CP02710A. PubMed DOI

Ng C.H., Lim H.N., Lim Y.S., Chee W.K., Huang N.M. Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int. J. Energy Res. 2015;39:344–355. doi: 10.1002/er.3247. DOI

Xu J., Wang D., Fan L., Yuan Y., Wei W., Liu R., Gu S., Xu W. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org. Electron. 2015;26:292–299. doi: 10.1016/j.orgel.2015.07.054. DOI

Wang Z., Carlsson D.O., Tammela P., Hua K., Zhang P., Nyholm L., Strømme M. Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. ACS Nano. 2015;9:7563–7571. doi: 10.1021/acsnano.5b02846. PubMed DOI

Karaca E., Gökcen D., Pekmez N.Ö., Pekmez K. Electrochemical synthesis of PPy composites with nanostructured MnOx, CoOx, NiOx, and FeOx in acetonitrile for supercapacitor applications. Electrochim. Acta. 2019;305:502–513. doi: 10.1016/j.electacta.2019.03.060. DOI

Bo J., Luo X., Huang H., Li L., Lai W., Yu X. Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J. Power Sources. 2018;407:105–111. doi: 10.1016/j.jpowsour.2018.10.064. DOI

Singu B.S., Yoon K.R. Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim. Acta. 2018;268:304–315. doi: 10.1016/j.electacta.2018.02.076. DOI

Dubey P., Maheshwari P.H., Sundriyal S. Human Hair-Derived Porous Activated Carbon as an Efficient Matrix for Conductive Polypyrrole for Hybrid Supercapacitors. Energy Fuels. 2022;36:13218–13228. doi: 10.1021/acs.energyfuels.2c01926. DOI

Wang F., Du H., Liu Y., Huang H., Yu X., Zhu X., Li L. Elastic polypyrrole hydrogels reinforced by TEMPO-oxidized cellulose for supercapacitors. Synth. Met. 2021;282:116952. doi: 10.1016/j.synthmet.2021.116952. DOI

Wei D., Zhu J., Luo L., Huang H., Li L., Yu X. Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. J. Mater. Sci. 2020;55:11779–11791. doi: 10.1007/s10853-020-04833-x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...