Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37896384
PubMed Central
PMC10610487
DOI
10.3390/polym15204140
PII: polym15204140
Knihovny.cz E-zdroje
- Klíčová slova
- Acid Blue 25, frozen-state polymerization, methyl orange, polypyrrole, supercapacitors,
- Publikační typ
- časopisecké články MeSH
The polymerization of pyrrole in the frozen state with the presence of organic dyes (methyl orange (MO) and Acid Blue 25 (AB)) has proven to produce polypyrrole (PPy) nanostructures. Herein, we explore the electrochemical properties of PPy prepared under frozen-state conditions (-24 °C) with and without the presence of organic dyes. The electroactivity of PPy prepared with MO and AB significantly increased in all electrolytic media with a capacitance higher than this of the PPy prepared at room temperature. The highest capacitance (1914 F g-1) was obtained for PPy-MO in 0.2 M HCl solution. The impedance spectra of PPy showed a decrease in charge transfer resistance when the dyes were present. This indicates a conductivity increase of PPy. Improved electrochemical stability was observed for PPy, PPy-MO, and PPy-AB prepared at -24 °C, wherein a steady gain of capacitance was maintained during 5000 potential cycling. In addition, a PPy-based supercapacitor device was fabricated to demonstrate the energy storage characteristics of PPy, where it showed good capacitive behavior and stability. Overall, frozen-state polymerized PPy posed an impressive capacitive performance for flexible supercapacitors.
Faculty of Science Charles University 128 43 Prague Czech Republic
Institute of Macromolecular Chemistry Czech Academy of Sciences 162 00 Prague Czech Republic
Zobrazit více v PubMed
Yang Y., Zhu T., Shen L., Liu Y., Zhang D., Zheng B., Gong K., Zheng J., Gong X. Recent progress in the all-solid-state flexible supercapacitors. SmartMat. 2022;3:349–383. doi: 10.1002/smm2.1103. DOI
Tadesse M.G., Lübben J.F. Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications. Gels. 2023;9:106. doi: 10.3390/gels9020106. PubMed DOI PMC
Zhang R., Zhang W., Shi M., Li H., Ma L., Niu H. Morphology controllable synthesis of heteroatoms-doped carbon materials for high-performance flexible supercapacitor. Dyes Pigment. 2022;199:109968. doi: 10.1016/j.dyepig.2021.109968. DOI
Sun Y., Yang Y., Fan L., Zheng W., Ye D., Xu J. Polypyrrole/SnCl2 modified bacterial cellulose electrodes with high areal capacitance for flexible supercapacitors. Carbohydr. Polym. 2022;292:119679. doi: 10.1016/j.carbpol.2022.119679. PubMed DOI
Wang W., Cao J., Yu J., Tian F., Luo X., Hao Y., Huang J., Wang F., Zhou W., Xu J., et al. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes. Polymers. 2023;15:1856. doi: 10.3390/polym15081856. PubMed DOI PMC
Yasami S., Mazinani S., Abdouss M. Developed composites materials for flexible supercapacitors electrode: “Recent progress & future aspects”. J. Energy Storage. 2023;72:108807. doi: 10.1016/j.est.2023.108807. DOI
Chang X., Lin C.-W., Huang A., El-Kady M.F., Kaner R.B. Molecular Engineering of Hierarchical Conducting Polymer Composites for Highly Stable Supercapacitors. Nano Lett. 2023;23:3317–3325. doi: 10.1021/acs.nanolett.3c00284. PubMed DOI
Wang S., Yu X., Li N., Zhang S., Liu C., Xi M., Iqbal O., Ali S., Wang Z. Enhancing energy storage capacity of supercapacitors via constructing a porous PPy/carbon cloth electrode by a template-assisted method. J. Energy Storage. 2023;72:108312. doi: 10.1016/j.est.2023.108312. DOI
Liu J., Xu D., Liu Q., Li S., Wang D., Zheng Z. Structural evolution of carbon foam and its effect on polypyrrole/carbon foam composite electrodes in supercapacitors. Compos. Part A Appl. Sci. Manuf. 2023;174:107734. doi: 10.1016/j.compositesa.2023.107734. DOI
Dianatdar A., Mukherjee A., Bose R.K. Oxidative chemical vapor deposition of polypyrrole onto carbon fabric for flexible supercapacitive electrode material. Synth. Met. 2023;298:117444. doi: 10.1016/j.synthmet.2023.117444. DOI
Ma X., Shi X., Wang Y., Xiong W., Xiong C., Yang J., You L., Wang S. Stretchable porous conductive hydrogel films prepared by emulsion template method as flexible sensors. Colloids Surf. A Physicochem. Eng. Asp. 2023;676:132272. doi: 10.1016/j.colsurfa.2023.132272. DOI
Ren H., Sun R., Jin Y., Xu M., Pei Y., Wang Q., Yan M. Electrochemical Properties of Multi-Morphology Polypyrrole Electrode Materials Depended on Template Agents. ChemistrySelect. 2023;8:e202302155. doi: 10.1002/slct.202302155. DOI
Naseeb I., Almashhadani H.A., Macadangdang R.R., Jr., Ullah S., Khan M.F., Kamran M., Qureshi N., Naseeb F. Interfacial polymerization synthesis of polypyrrole and sodium metavanadate (PPy/NaVO3) composite as an excellent performance electrode for supercapacitors. Results Chem. 2022;4:100446. doi: 10.1016/j.rechem.2022.100446. DOI
Sun Y., Jia D., Zhang A., Tian J., Zheng Y., Zhao W., Cui L., Liu J. Synthesis of polypyrrole coated melamine foam by in-situ interfacial polymerization method for highly compressible and flexible supercapacitor. J. Colloid Interface Sci. 2019;557:617–627. doi: 10.1016/j.jcis.2019.09.065. PubMed DOI
Masri K., Kalaleh H.A., Alhassan A. Fabrication of Sensitive and Selective Ammonia Gas Sensors Based on Pyrrole Interfacial Polymerization. J. Electron. Mater. 2019;48:5967–5974. doi: 10.1007/s11664-019-07338-9. DOI
Namhongsa M., Daranarong D., Sriyai M., Molloy R., Ross S., Ross G.M., Tuantranont A., Tocharus J., Sivasinprasasn S., Topham P.D., et al. Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning. Biomacromolecules. 2022;23:4532–4546. doi: 10.1021/acs.biomac.2c00626. PubMed DOI
Wang X., Yu G., Zhang J., Yu M., Ramakrishna S., Long Y. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021;115:100704. doi: 10.1016/j.pmatsci.2020.100704. DOI
Yu M., Li Y., Xu S., Li J., Wang L. Growing spherical polypyrrole nanoparticles onto the magnetic carbon aerogel for improving electrochemical performance for supercapacitors. J. Porous Mater. 2021;28:1999–2011. doi: 10.1007/s10934-021-01115-y. DOI
Yue T., Douka A.I., Qi K., Qiu Y., Guo X., Xia B.Y. Flexible and hollow polypyrrole foam with high loading of metal–organic framework nanowires for wearable supercapacitors. J. Mater. Chem. A. 2021;9:21799–21806. doi: 10.1039/D1TA05330B. DOI
Xue J., Yang Q., Guan R., Shen Q., Liu X., Jia H., Li Q. High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Mater. Chem. Phys. 2020;256:123591. doi: 10.1016/j.matchemphys.2020.123591. DOI
Lima R.M.A.P., dos Reis G.S., Lassi U., Lima E.C., Dotto G.L., de Oliveira H.P. Sustainable Supercapacitors Based on Polypyrrole-Doped Activated Biochar from Wood Waste Electrodes. C. 2023;9:59. doi: 10.3390/c9020059. DOI
Xiong Z., Fang Z., Ding Z., Li G., Zhou J., Chen K., Yang D., Qiu X. A Novel Strategy to Enhance the Electrochemical Performance of Polypyrrole-Coated Paper-Based Supercapacitor. Macromol. Mater. Eng. 2022;307:2200359. doi: 10.1002/mame.202200359. DOI
Zhang S., Zhao B., Zhang D., Yang M., Huang X., Han L., Chen K., Li X., Pang R., Shang Y., et al. Conductive hydrogels incorporating carbon nanoparticles: A review of synthesis, performance and applications. Particuology. 2023;83:212–231. doi: 10.1016/j.partic.2023.06.002. DOI
Shen C., Chen Y., Feng B., Chi H., Zhang H. Polypyrrole Hollow Nanotubes Loaded with Au and Fe3O4 Nanoparticles for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Chem. Res. Chin. Univ. 2022;38:941–948. doi: 10.1007/s40242-022-2120-z. DOI
Wei F., Zhong Y., Luo H., Wu Y., Fu J., He Q., Cheng J., Na J., Yamauchi Y., Liu S. Soft template-mediated coupling construction of sandwiched mesoporous PPy/Ag nanoplates for rapid and selective NH3 sensing. J. Mater. Chem. A. 2021;9:8308–8316. doi: 10.1039/D1TA01110C. DOI
Zhang L., Zhao C., Wang G., Suo H., He D., Yang S., Ding J. In-situ fabrication of carbon cloth-supported polypyrrole-platinum nanosheets for the electrochemical detection of ammonia–nitrogen. Mater. Lett. 2021;305:130767. doi: 10.1016/j.matlet.2021.130767. DOI
Murugesan B., Pandiyan N., Arumugam M., Sonamuthu J., Samayanan S., Yurong C., Juming Y., Mahalingam S. Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering. Appl. Surf. Sci. 2020;510:145403. doi: 10.1016/j.apsusc.2020.145403. DOI
Malere C.P.R., Donati B., Eras N., Silva V.A., Lona L.F. Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic–inorganic nanocomposite of polypyrrole/kaolinite. J. Appl. Polym. Sci. 2021;139:52023. doi: 10.1002/app.52023. DOI
Mrah L., Meghabar R. Influence of clay modification process in polypyrrole-layered silicate nanocomposite. SN Appl. Sci. 2020;2:659. doi: 10.1007/s42452-020-2338-7. DOI
Fu X., Wang J.K., Ramírez-Pérez A.C., Choong C., Lisak G. Flexible conducting polymer-based cellulose substrates for on-skin applications. Mater. Sci. Eng. C. 2020;108:110392. doi: 10.1016/j.msec.2019.110392. PubMed DOI
Ruan Y., Chen L., Cui L., An Q. PPy-Modified Prussian Blue Cathode Materials for Low-Cost and Cycling-Stable Aqueous Zinc-Based Hybrid Battery. Coatings. 2022;12:779. doi: 10.3390/coatings12060779. DOI
Heybet E.N., Ugraskan V., Isik B., Yazici O. Adsorption of methylene blue dye on sodium alginate/polypyrrole nanotube composites. Int. J. Biol. Macromol. 2021;193:88–99. doi: 10.1016/j.ijbiomac.2021.10.084. PubMed DOI
Ahmed S., Ahmed A., Basha D.B., Hussain S., Uddin I., Gondal M.A. Critical review on recent developments in conducting polymer nanocomposites for supercapacitors. Synth. Met. 2023;295:117326. doi: 10.1016/j.synthmet.2023.117326. DOI
Han Y., Dai L. Conducting Polymers for Flexible Supercapacitors. Macromol. Chem. Phys. 2019;220:1800355. doi: 10.1002/macp.201800355. DOI
Minisy I.M., Acharya U., Kobera L., Trchová M., Unterweger C., Breitenbach S., Brus J., Pfleger J., Stejskal J., Bober P. Highly conducting 1-D polypyrrole prepared in the presence of safranin. J. Mater. Chem. C. 2020;8:12140–12147. doi: 10.1039/D0TC02838J. DOI
Minisy I.M., Bober P. Frozen-State Polymerization as a Tool in Conductivity Enhancement of Polypyrrole. Macromol. Rapid Commun. 2020;41:2000364. doi: 10.1002/marc.202000364. PubMed DOI
Minisy I.M., Bober P., Šeděnková I., Stejskal J. Methyl red dye in the tuning of polypyrrole conductivity. Polymer. 2020;207:122854. doi: 10.1016/j.polymer.2020.122854. DOI
Minisy I.M., Bober P., Acharya U., Trchová M., Hromádková J., Pfleger J., Stejskal J. Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer. 2019;174:11–17. doi: 10.1016/j.polymer.2019.04.045. DOI
Tumacder D.V., Morávková Z., Minisy I.M., Hromádková J., Bober P. Electropolymerized polypyrrole/safranin-O films: Capacitance enhancement. Polymer. 2021;230:124099. doi: 10.1016/j.polymer.2021.124099. DOI
Roohi Z., Mighri F., Zhang Z. A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment. Polymers. 2022;14:4693. doi: 10.3390/polym14214693. PubMed DOI PMC
Li Y., Bober P., Trchová M., Stejskal J. Polypyrrole prepared in the presence of methyl orange and ethyl orange: Nanotubes versus globules in conductivity enhancement. J. Mater. Chem. C. 2017;17:4236–4245. doi: 10.1039/C7TC00206H. DOI
Hryniewicz B.M., Lima R.V., Wolfart F., Vidotti M. Influence of the pH on the electrochemical synthesis of polypyrrole nanotubes and the supercapacitive performance evaluation. Electrochim. Acta. 2019;293:447–457. doi: 10.1016/j.electacta.2018.09.200. DOI
Bober P., Li Y., Acharya U., Panthi Y., Pfleger J., Humpolíček P., Trchová M., Stejskal J. Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synth. Met. 2018;237:40–49. doi: 10.1016/j.synthmet.2018.01.010. DOI
Tumacder D.V., Morávková Z., Bober P. Enhanced electrochemical performance of electrosynthesized fibrillar polypyrrole film. Mater. Lett. 2022;308:131295. doi: 10.1016/j.matlet.2021.131295. DOI
Tumacder D.V., Morávková Z., Konefał M., Salapare H.S., Guittard F., Bober P. Effect of Acid Blue dyes on the electrochemical capacitance of polypyrrole. Mater. Res. Bull. 2023;168:112455. doi: 10.1016/j.materresbull.2023.112455. DOI
Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI
Stejskal J., Trchová M., Bober P., Morávková Z., Kopecký D., Vrňata M., Prokeš J., Varga M., Watzlová E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI
Abdul Bashid H.A., Lim H.N., Kamaruzaman S., Rashid S.A., Yunus R., Huang N.M., Yin C.Y., Rahman M.M., Altarawneh M., Jiang Z.T., et al. Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor. Nanoscale Res. Lett. 2017;12:246. doi: 10.1186/s11671-017-2010-3. PubMed DOI PMC
Ramachandran R., Wang F. Supercapacitors—Theoretical and Practical Solutions. InTech Open; London, UK: 2017. Electrochemical Capacitor Performance: Influence of Aqueous Electrolytes. DOI
Yunita A., Farma R., Awitdrus A., Apriyani I. The effect of various electrolyte solutions on the electrochemical properties of the carbon electrodes of supercapacitor cells based on biomass waste. Mater. Today Proc. 2023;87:246–252. doi: 10.1016/j.matpr.2023.03.102. DOI
Pal B., Yang S., Ramesh S., Thangadurai V., Jose R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019;1:3807–3835. doi: 10.1039/C9NA00374F. PubMed DOI PMC
Wang Y., Wang H., Zhang W., Fei G., Shu K., Sun L., Tian S., Niu H., Wang M., Hu G., et al. A Simple Route to Fabricate Ultralong and Uniform Polypyrrole Nanowires with High Electrochemical Capacitance for Supercapacitor Electrodes. ACS Appl. Polym. Mater. 2023;5:1254–1263. doi: 10.1021/acsapm.2c01731. DOI
Mi H., Zhang X., Ye X., Yang S. Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors. J. Power Sources. 2008;176:403–409. doi: 10.1016/j.jpowsour.2007.10.070. DOI
Mei B.A., Lau J., Lin T., Tolbert S.H., Dunn B.S., Pilon L. Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage. J. Phys. Chem. C. 2018;122:24499–24511. doi: 10.1021/acs.jpcc.8b05241. DOI
Harrington D.A., Driessche P.V. Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim. Acta. 2011;56:8005–8013. doi: 10.1016/j.electacta.2011.01.067. DOI
Zhu A., Sun X., Gao X., Wang J., Zhao N., Sha J. Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. J. Electroanal. Chem. 2019;855:113627. doi: 10.1016/j.jelechem.2019.113627. DOI
Ebrahim S.M., Latif M.A.-E., Gad A., Soliman M. Cyclic voltammetry and impedance studies of electrodeposited polypyrrole nanoparticles doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt. Thin Solid Films. 2010;518:4100–4105. doi: 10.1016/j.tsf.2009.10.167. DOI
Policastro S.A., Anderson R.M., Hangarter C.M., Arcari A., Iezzi E.B. Incorporating Physics-Based Models into Equivalent Circuit Analysis of EIS Data from Organic Coatings. Coatings. 2023;13:1285. doi: 10.3390/coatings13071285. DOI
Morávková Z., Taboubi O., Minisy I.M., Bober P. The evolution of the molecular structure of polypyrrole during chemical polymerization. Synth. Met. 2021;271:116608. doi: 10.1016/j.synthmet.2020.116608. DOI
Hou Y., Zhang L., Chen L.Y., Liu P., Hirata A., Chen M.W. Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold. Phys. Chem. Chem. Phys. 2014;16:3523–3528. doi: 10.1039/c3cp54497d. PubMed DOI
Zhu J., Xu Y., Wang J., Wang J., Bai Y., Du X. Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor. Phys. Chem. Chem. Phys. 2015;17:19885–19894. doi: 10.1039/C5CP02710A. PubMed DOI
Ng C.H., Lim H.N., Lim Y.S., Chee W.K., Huang N.M. Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int. J. Energy Res. 2015;39:344–355. doi: 10.1002/er.3247. DOI
Xu J., Wang D., Fan L., Yuan Y., Wei W., Liu R., Gu S., Xu W. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org. Electron. 2015;26:292–299. doi: 10.1016/j.orgel.2015.07.054. DOI
Wang Z., Carlsson D.O., Tammela P., Hua K., Zhang P., Nyholm L., Strømme M. Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. ACS Nano. 2015;9:7563–7571. doi: 10.1021/acsnano.5b02846. PubMed DOI
Karaca E., Gökcen D., Pekmez N.Ö., Pekmez K. Electrochemical synthesis of PPy composites with nanostructured MnOx, CoOx, NiOx, and FeOx in acetonitrile for supercapacitor applications. Electrochim. Acta. 2019;305:502–513. doi: 10.1016/j.electacta.2019.03.060. DOI
Bo J., Luo X., Huang H., Li L., Lai W., Yu X. Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J. Power Sources. 2018;407:105–111. doi: 10.1016/j.jpowsour.2018.10.064. DOI
Singu B.S., Yoon K.R. Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim. Acta. 2018;268:304–315. doi: 10.1016/j.electacta.2018.02.076. DOI
Dubey P., Maheshwari P.H., Sundriyal S. Human Hair-Derived Porous Activated Carbon as an Efficient Matrix for Conductive Polypyrrole for Hybrid Supercapacitors. Energy Fuels. 2022;36:13218–13228. doi: 10.1021/acs.energyfuels.2c01926. DOI
Wang F., Du H., Liu Y., Huang H., Yu X., Zhu X., Li L. Elastic polypyrrole hydrogels reinforced by TEMPO-oxidized cellulose for supercapacitors. Synth. Met. 2021;282:116952. doi: 10.1016/j.synthmet.2021.116952. DOI
Wei D., Zhu J., Luo L., Huang H., Li L., Yu X. Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. J. Mater. Sci. 2020;55:11779–11791. doi: 10.1007/s10853-020-04833-x. DOI