Enhanced Fault Type Detection in Covered Conductors Using a Stacked Ensemble and Novel Algorithm Combination

. 2023 Oct 10 ; 23 (20) : . [epub] 20231010

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37896448

Grantová podpora
TN02000025 National Centre for Energy II

This study introduces an innovative approach to enhance fault detection in XLPE-covered conductors used for power distribution systems. These covered conductors are widely utilized in forested areas (natural parks) to decrease the buffer zone and increase the reliability of the distribution network. Recognizing the imperative need for precise fault detection in this context, this research employs an antenna-based method to detect a particular type of fault. The present research contains the classification of fault type detection, which was previously accomplished using a very expensive and challenging-to-install galvanic contact method, and only to a limited extent, which did not provide information about the fault type. Additionally, differentiating between types of faults in the contact method is much easier because information for each phase is available. The proposed method uses antennas and a classifier to effectively differentiate between fault types, ranging from single-phase to three-phase faults, as well as among different types of faults. This has never been done before. To bolster the accuracy, a stacking ensemble method involving the logistic regression is implemented. This approach not only advances precise fault detection but also encourages the broader adoption of covered conductors. This promises benefits such as a reduced buffer zone, improved distribution network reliability, and positive environmental outcomes through accident prevention and safe covered conductor utilization. Additionally, it is suggested that the fault type detection could lead to a decrease in false positives.

Zobrazit více v PubMed

Boggs S.A. Partial discharge: Overview and signal generation. IEEE Electr. Insul. Mag. 1990;6:33–39. doi: 10.1109/57.63057. DOI

Cavallini A., Boyer L., Luton M., Mirebeau P., Montanari G. Partial discharge testing of XLPE cables for HVDC: Challenges and opportunities; Proceedings of the 9th International Conference Insulated Power Cables (Jicable’15); Versailles, France. 21–25 June 2015.

Kabot O., Fulneček J., Mišák S., Prokop L., Vaculík J. Partial discharges pattern analysis of various covered conductors; Proceedings of the 2020 21st International Scientific Conference on Electric Power Engineering (EPE); Prague, Czech Republic. 19–21 October 2020; pp. 1–5.

Lehtonen M. Fault rates of different types of medium voltage power lines in different environments; Proceedings of the 2010 Electric Power Quality and Supply Reliability Conference; Kuressaare, Estonia. 16–18 June 2010; pp. 197–202. DOI

Chiu B., Roy R., Tran T. Wildfire resiliency: California case for change. IEEE Power Energy Mag. 2022;20:28–37. doi: 10.1109/MPE.2021.3122730. DOI

Talaat M., El-Shaarawy Z., Tayseer M., El-Zein A. An economic study concerning the cost reduction of the covered transmission conductors based on different optimization techniques. Results Eng. 2021;11:100262. doi: 10.1016/j.rineng.2021.100262. DOI

Pakonen P. Characteristics of partial discharges caused by trees in contact with covered conductor lines. IEEE Trans. Dielectr. Electr. Insul. 2008;15:1626–1633. doi: 10.1109/TDEI.2008.4712666. DOI

Kaziz S., Said M.H., Imburgia A., Maamer B., Flandre D., Romano P., Tounsi F. Radiometric Partial Discharge Detection: A Review. Energies. 2023;16:1978. doi: 10.3390/en16041978. DOI

Mišák S., Hamacek Š., Bartłomiejczyk M. Verification of a Novel Method of Detecting Faults in Medium-Voltage Systems with Covered Conductors. Metrol. Meas. Syst. 2017;24:277–288. doi: 10.1515/mms-2017-0020. DOI

Mohamed H., Lazaridis P., Upton D., Khan U., Saeed B., Jaber A., Zhang Y., Mather P., Vieira M.F., Barlee K., et al. Partial discharge detection using low cost RTL-SDR model for wideband spectrum sensing; Proceedings of the 2016 23rd International Conference on Telecommunications (ICT); Thessaloniki, Greece. 16–18 May 2016; pp. 1–5.

Chen L.J., Tsao T.P., Lin Y.H. New diagnosis approach to epoxy resin transformer partial discharge using acoustic technology. IEEE Trans. Power Deliv. 2005;20:2501–2508. doi: 10.1109/TPWRD.2005.855425. DOI

Si W.R., Wu X.T., Liang J.C., Li X.G., He L., Yuan P. Review on PD Ultrasonic Detection Using EFPI - Part I: The Optical Fiber Sensing Technologies; Proceedings of the 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA); Phuket, Thailand. 28–29 February 2020; DOI

Kim J., Kim K.I. Partial Discharge Online Detection for Long-Term Operational Sustainability of On-Site Low Voltage Distribution Network Using CNN Transfer Learning. Sustainability. 2021;13:4692. doi: 10.3390/su13094692. DOI

Gilbert I., Mulroy P., Hurtado A., Akroud N., Orue Sagarduy I. Practical Experience of a Partial Discharge Monitoring Application on an Experimentation MV Distribution Network; Proceedings of the CIRED 23rd International Conference on Electricity Distribution; Lyon, France. 5–18 June 2015.

Martinovic T., Fulnecek J. Fast Algorithm for Contactless Partial Discharge Detection on Remote Gateway Device. IEEE Trans. Power Deliv. 2021;2021:1. doi: 10.1109/TPWRD.2021.3104746. DOI

Fernando S.C., Rowe W.S.T., Wong K.L. Partial discharge detection using antenna like activity of overhead distribution cables; Proceedings of the 2010 20th Australasian Universities Power Engineering Conference; Christchurch, New Zealand. 5–8 December 2010; pp. 1–5.

Khor K.J., Wong K.L. Partial discharge sensing in overhead distribution line; Proceedings of the 2008 Australasian Universities Power Engineering Conference; Sydney, Australia. 14–17 December 2008; pp. 1–5.

Sheng B., Zhou C., Hepburn D.M., Dong X., Peers G., Zhou W., Tang Z. Partial discharge pulse propagation in power cable and partial discharge monitoring system. IEEE Trans. Dielectr. Electr. Insul. 2014;21:948–956. doi: 10.1109/TDEI.2014.6832236. DOI

Chan J.Q., Raymond W.J.K., Illias H.A., Othman M. Partial Discharge Localization Techniques: A Review of Recent Progress. Energies. 2023;16:2863. doi: 10.3390/en16062863. DOI

Song Y., Chen W., Wan F., Zhang Z., Du L., Wang P., Li J., Wu Z., Huang H. Online multi-parameter sensing and condition assessment technology for power cables: A review. Electr. Power Syst. Res. 2022;210:108140. doi: 10.1016/j.epsr.2022.108140. DOI

Uwiringiyimana J.P., Khayam U., Suwarno, Montanari G.C. Comparative Analysis of Partial Discharge Detection Features Using a UHF Antenna and Conventional HFCT Sensor. IEEE Access. 2022;10:107214–107226. doi: 10.1109/ACCESS.2022.3212746. DOI

Xi Y., Tang X., Li Z., Shen Y., Zeng X. Fault detection and classification on insulated overhead conductors based on MCNN-LSTM. IET Renew. Power Gener. 2022;16:1425–1433. doi: 10.1049/rpg2.12380. DOI

Raymond W.J.K., Xin C.W., Kin L.W., Illias H.A. Noise invariant partial discharge classification based on convolutional neural network. Measurement. 2021;177:109220. doi: 10.1016/j.measurement.2021.109220. DOI

Uckol H.I., Ilhan S., Ozdemir A. Workmanship defect classification in medium voltage cable terminations with convolutional neural network. Electr. Power Syst. Res. 2021;194:107105. doi: 10.1016/j.epsr.2021.107105. DOI

Rizeakos V., Bachoumis A., Andriopoulos N., Birbas M., Birbas A. Deep learning-based application for fault location identification and type classification in active distribution grids. Appl. Energy. 2023;338:120932. doi: 10.1016/j.apenergy.2023.120932. DOI

Misak S., Fulnecek J., Jezowicz T., Vantuch T., Burianek T. Usage of Antenna for Detection of Tree Falls on Overhead Lines with Covered Conductors. Adv. Electr. Electron. Eng. 2017;15:1894. doi: 10.15598/aeee.v15i1.1894. DOI

Klein L., Fulneček J., Seidl D., Prokop L., Mišák S., Dvorský J., Piecha M. A Data Set of Signals from an Antenna for Detection of Partial Discharges in Overhead Insulated Power Line. Sci. Data. 2023;10:2451. doi: 10.1038/s41597-023-02451-1. PubMed DOI PMC

Wan Z., Xu Y., Šavija B. On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance. Materials. 2021;14:713. doi: 10.3390/ma14040713. PubMed DOI PMC

Pande S., Khamparia A., Gupta D. Feature selection and comparison of classification algorithms for wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2021;14:1977–1989. doi: 10.1007/s12652-021-03411-6. DOI

Dempster A., Petitjean F., Webb G.I. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Discov. 2020;34:1454–1495. doi: 10.1007/s10618-020-00701-z. DOI

Dempster A., Schmidt D.F., Webb G.I. MiniRocket; Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery Data Mining, ACM; Virtual Event. 14–18 August 2021; DOI

Chen T., Guestrin C. XGBoost; Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM; San Francisco, CA, USA. 13–17 August 2016; DOI

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.

Löning M., Bagnall A., Ganesh S., Kazakov V., Lines J., Király F.J. sktime: A Unified Interface for Machine Learning with Time Series. arXiv. 2019 doi: 10.48550/ARXIV.1909.07872.1909.07872 DOI

Zhang Y., Liu J., Shen W. A review of ensemble learning algorithms used in remote sensing applications. Appl. Sci. 2022;12:8654. doi: 10.3390/app12178654. DOI

Ganaie M.A., Hu M., Malik A., Tanveer M., Suganthan P. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022;115:105151. doi: 10.1016/j.engappai.2022.105151. DOI

Klein L., Seidl D., Fulneček J., Prokop L., Mišák S., Dvorskỳ J. Antenna contactless partial discharges detection in covered conductors using ensemble stacking neural networks. Expert Syst. Appl. 2023;213:118910. doi: 10.1016/j.eswa.2022.118910. DOI

Klein L., Žmij P., Krömer P. Partial Discharge Detection by Edge Computing. IEEE Access. 2023;11:44192–44204. doi: 10.1109/ACCESS.2023.3268763. DOI

Kiarash M., He Z., Zhai M., Tung F. Ranking Regularization for Critical Rare Classes: Minimizing False Positives at a High True Positive Rate. arXiv. 2023 doi: 10.48550/ARXIV.2304.00049.2304.00049 DOI

Simas R., Maestri F., Normando D. Controlling false positive rates in research and its clinical implications. Dent. Press J. Orthod. 2014;19:24–25. doi: 10.1590/2176-9451.19.3.024-025.ebo. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...