Enhanced Fault Type Detection in Covered Conductors Using a Stacked Ensemble and Novel Algorithm Combination
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000025
National Centre for Energy II
PubMed
37896448
PubMed Central
PMC10611413
DOI
10.3390/s23208353
PII: s23208353
Knihovny.cz E-zdroje
- Klíčová slova
- covered conductors, fault diagnosis, frequency domain analysis, partial discharge, radio antenna,
- Publikační typ
- časopisecké články MeSH
This study introduces an innovative approach to enhance fault detection in XLPE-covered conductors used for power distribution systems. These covered conductors are widely utilized in forested areas (natural parks) to decrease the buffer zone and increase the reliability of the distribution network. Recognizing the imperative need for precise fault detection in this context, this research employs an antenna-based method to detect a particular type of fault. The present research contains the classification of fault type detection, which was previously accomplished using a very expensive and challenging-to-install galvanic contact method, and only to a limited extent, which did not provide information about the fault type. Additionally, differentiating between types of faults in the contact method is much easier because information for each phase is available. The proposed method uses antennas and a classifier to effectively differentiate between fault types, ranging from single-phase to three-phase faults, as well as among different types of faults. This has never been done before. To bolster the accuracy, a stacking ensemble method involving the logistic regression is implemented. This approach not only advances precise fault detection but also encourages the broader adoption of covered conductors. This promises benefits such as a reduced buffer zone, improved distribution network reliability, and positive environmental outcomes through accident prevention and safe covered conductor utilization. Additionally, it is suggested that the fault type detection could lead to a decrease in false positives.
Department of Computer Science VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
ENET Centre CEET VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
Faculty of Electrical Engineering Bialystok University of Technology 15 351 Bialystok Poland
Zobrazit více v PubMed
Boggs S.A. Partial discharge: Overview and signal generation. IEEE Electr. Insul. Mag. 1990;6:33–39. doi: 10.1109/57.63057. DOI
Cavallini A., Boyer L., Luton M., Mirebeau P., Montanari G. Partial discharge testing of XLPE cables for HVDC: Challenges and opportunities; Proceedings of the 9th International Conference Insulated Power Cables (Jicable’15); Versailles, France. 21–25 June 2015.
Kabot O., Fulneček J., Mišák S., Prokop L., Vaculík J. Partial discharges pattern analysis of various covered conductors; Proceedings of the 2020 21st International Scientific Conference on Electric Power Engineering (EPE); Prague, Czech Republic. 19–21 October 2020; pp. 1–5.
Lehtonen M. Fault rates of different types of medium voltage power lines in different environments; Proceedings of the 2010 Electric Power Quality and Supply Reliability Conference; Kuressaare, Estonia. 16–18 June 2010; pp. 197–202. DOI
Chiu B., Roy R., Tran T. Wildfire resiliency: California case for change. IEEE Power Energy Mag. 2022;20:28–37. doi: 10.1109/MPE.2021.3122730. DOI
Talaat M., El-Shaarawy Z., Tayseer M., El-Zein A. An economic study concerning the cost reduction of the covered transmission conductors based on different optimization techniques. Results Eng. 2021;11:100262. doi: 10.1016/j.rineng.2021.100262. DOI
Pakonen P. Characteristics of partial discharges caused by trees in contact with covered conductor lines. IEEE Trans. Dielectr. Electr. Insul. 2008;15:1626–1633. doi: 10.1109/TDEI.2008.4712666. DOI
Kaziz S., Said M.H., Imburgia A., Maamer B., Flandre D., Romano P., Tounsi F. Radiometric Partial Discharge Detection: A Review. Energies. 2023;16:1978. doi: 10.3390/en16041978. DOI
Mišák S., Hamacek Š., Bartłomiejczyk M. Verification of a Novel Method of Detecting Faults in Medium-Voltage Systems with Covered Conductors. Metrol. Meas. Syst. 2017;24:277–288. doi: 10.1515/mms-2017-0020. DOI
Mohamed H., Lazaridis P., Upton D., Khan U., Saeed B., Jaber A., Zhang Y., Mather P., Vieira M.F., Barlee K., et al. Partial discharge detection using low cost RTL-SDR model for wideband spectrum sensing; Proceedings of the 2016 23rd International Conference on Telecommunications (ICT); Thessaloniki, Greece. 16–18 May 2016; pp. 1–5.
Chen L.J., Tsao T.P., Lin Y.H. New diagnosis approach to epoxy resin transformer partial discharge using acoustic technology. IEEE Trans. Power Deliv. 2005;20:2501–2508. doi: 10.1109/TPWRD.2005.855425. DOI
Si W.R., Wu X.T., Liang J.C., Li X.G., He L., Yuan P. Review on PD Ultrasonic Detection Using EFPI - Part I: The Optical Fiber Sensing Technologies; Proceedings of the 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA); Phuket, Thailand. 28–29 February 2020; DOI
Kim J., Kim K.I. Partial Discharge Online Detection for Long-Term Operational Sustainability of On-Site Low Voltage Distribution Network Using CNN Transfer Learning. Sustainability. 2021;13:4692. doi: 10.3390/su13094692. DOI
Gilbert I., Mulroy P., Hurtado A., Akroud N., Orue Sagarduy I. Practical Experience of a Partial Discharge Monitoring Application on an Experimentation MV Distribution Network; Proceedings of the CIRED 23rd International Conference on Electricity Distribution; Lyon, France. 5–18 June 2015.
Martinovic T., Fulnecek J. Fast Algorithm for Contactless Partial Discharge Detection on Remote Gateway Device. IEEE Trans. Power Deliv. 2021;2021:1. doi: 10.1109/TPWRD.2021.3104746. DOI
Fernando S.C., Rowe W.S.T., Wong K.L. Partial discharge detection using antenna like activity of overhead distribution cables; Proceedings of the 2010 20th Australasian Universities Power Engineering Conference; Christchurch, New Zealand. 5–8 December 2010; pp. 1–5.
Khor K.J., Wong K.L. Partial discharge sensing in overhead distribution line; Proceedings of the 2008 Australasian Universities Power Engineering Conference; Sydney, Australia. 14–17 December 2008; pp. 1–5.
Sheng B., Zhou C., Hepburn D.M., Dong X., Peers G., Zhou W., Tang Z. Partial discharge pulse propagation in power cable and partial discharge monitoring system. IEEE Trans. Dielectr. Electr. Insul. 2014;21:948–956. doi: 10.1109/TDEI.2014.6832236. DOI
Chan J.Q., Raymond W.J.K., Illias H.A., Othman M. Partial Discharge Localization Techniques: A Review of Recent Progress. Energies. 2023;16:2863. doi: 10.3390/en16062863. DOI
Song Y., Chen W., Wan F., Zhang Z., Du L., Wang P., Li J., Wu Z., Huang H. Online multi-parameter sensing and condition assessment technology for power cables: A review. Electr. Power Syst. Res. 2022;210:108140. doi: 10.1016/j.epsr.2022.108140. DOI
Uwiringiyimana J.P., Khayam U., Suwarno, Montanari G.C. Comparative Analysis of Partial Discharge Detection Features Using a UHF Antenna and Conventional HFCT Sensor. IEEE Access. 2022;10:107214–107226. doi: 10.1109/ACCESS.2022.3212746. DOI
Xi Y., Tang X., Li Z., Shen Y., Zeng X. Fault detection and classification on insulated overhead conductors based on MCNN-LSTM. IET Renew. Power Gener. 2022;16:1425–1433. doi: 10.1049/rpg2.12380. DOI
Raymond W.J.K., Xin C.W., Kin L.W., Illias H.A. Noise invariant partial discharge classification based on convolutional neural network. Measurement. 2021;177:109220. doi: 10.1016/j.measurement.2021.109220. DOI
Uckol H.I., Ilhan S., Ozdemir A. Workmanship defect classification in medium voltage cable terminations with convolutional neural network. Electr. Power Syst. Res. 2021;194:107105. doi: 10.1016/j.epsr.2021.107105. DOI
Rizeakos V., Bachoumis A., Andriopoulos N., Birbas M., Birbas A. Deep learning-based application for fault location identification and type classification in active distribution grids. Appl. Energy. 2023;338:120932. doi: 10.1016/j.apenergy.2023.120932. DOI
Misak S., Fulnecek J., Jezowicz T., Vantuch T., Burianek T. Usage of Antenna for Detection of Tree Falls on Overhead Lines with Covered Conductors. Adv. Electr. Electron. Eng. 2017;15:1894. doi: 10.15598/aeee.v15i1.1894. DOI
Klein L., Fulneček J., Seidl D., Prokop L., Mišák S., Dvorský J., Piecha M. A Data Set of Signals from an Antenna for Detection of Partial Discharges in Overhead Insulated Power Line. Sci. Data. 2023;10:2451. doi: 10.1038/s41597-023-02451-1. PubMed DOI PMC
Wan Z., Xu Y., Šavija B. On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance. Materials. 2021;14:713. doi: 10.3390/ma14040713. PubMed DOI PMC
Pande S., Khamparia A., Gupta D. Feature selection and comparison of classification algorithms for wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2021;14:1977–1989. doi: 10.1007/s12652-021-03411-6. DOI
Dempster A., Petitjean F., Webb G.I. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Discov. 2020;34:1454–1495. doi: 10.1007/s10618-020-00701-z. DOI
Dempster A., Schmidt D.F., Webb G.I. MiniRocket; Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery Data Mining, ACM; Virtual Event. 14–18 August 2021; DOI
Chen T., Guestrin C. XGBoost; Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM; San Francisco, CA, USA. 13–17 August 2016; DOI
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Löning M., Bagnall A., Ganesh S., Kazakov V., Lines J., Király F.J. sktime: A Unified Interface for Machine Learning with Time Series. arXiv. 2019 doi: 10.48550/ARXIV.1909.07872.1909.07872 DOI
Zhang Y., Liu J., Shen W. A review of ensemble learning algorithms used in remote sensing applications. Appl. Sci. 2022;12:8654. doi: 10.3390/app12178654. DOI
Ganaie M.A., Hu M., Malik A., Tanveer M., Suganthan P. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022;115:105151. doi: 10.1016/j.engappai.2022.105151. DOI
Klein L., Seidl D., Fulneček J., Prokop L., Mišák S., Dvorskỳ J. Antenna contactless partial discharges detection in covered conductors using ensemble stacking neural networks. Expert Syst. Appl. 2023;213:118910. doi: 10.1016/j.eswa.2022.118910. DOI
Klein L., Žmij P., Krömer P. Partial Discharge Detection by Edge Computing. IEEE Access. 2023;11:44192–44204. doi: 10.1109/ACCESS.2023.3268763. DOI
Kiarash M., He Z., Zhai M., Tung F. Ranking Regularization for Critical Rare Classes: Minimizing False Positives at a High True Positive Rate. arXiv. 2023 doi: 10.48550/ARXIV.2304.00049.2304.00049 DOI
Simas R., Maestri F., Normando D. Controlling false positive rates in research and its clinical implications. Dent. Press J. Orthod. 2014;19:24–25. doi: 10.1590/2176-9451.19.3.024-025.ebo. PubMed DOI PMC