Skeletal muscle myosin heavy chain expression and 3D capillary network changes in streptozotocin-induced diabetic female mice
Jazyk angličtina Země Bosna a Hercegovina Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37902457
PubMed Central
PMC11088899
DOI
10.17305/bb.2023.9843
Knihovny.cz E-zdroje
- MeSH
- diabetes mellitus 1. typu metabolismus patologie MeSH
- experimentální diabetes mellitus * metabolismus patologie MeSH
- kapiláry * patologie metabolismus MeSH
- kosterní svaly * metabolismus patologie krevní zásobení MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- streptozocin MeSH
- těžké řetězce myosinu * metabolismus MeSH
- zobrazování trojrozměrné MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- streptozocin MeSH
- těžké řetězce myosinu * MeSH
It is not well-understood how type 1 diabetes (T1DM) affects skeletal muscle histological phenotype, particularly capillarisation. This study aimed to analyze skeletal muscle myosin heavy chain (MyHC) fibre type changes and 3D capillary network characteristics in experimental T1DM mice. Female C57BL/6J-OlaHsd mice were categorized into streptozotocin (STZ)-induced diabetic (n = 12) and age-matched non-diabetic controls (n =12). The muscle fibre phenotype of the soleus, gluteus maximus, and gastrocnemius muscles were characterized based on the expression of MyHC isoforms, while capillaries of the gluteus maximus were assessed with immunofluorescence staining, confocal laser microscopy and 3D image analysis. STZ-induced diabetic mice exhibited elevated glucose levels, reduced body weight, and prolonged thermal latency, verifying the T1DM phenotype. In both T1DM and non-diabetic mice, the gluteus maximus and gastrocnemius muscles predominantly expressed fast-twitch type 2b fibers, with no significant differences noted. However, the soleus muscle in non-diabetic mice had a greater proportion of type 2a fibers and comparable type 1 fiber densities (26.2 ± 14.6% vs 21.9 ± 13.5%) relative to diabetic mice. T1DM mice showed reduced fiber diameters (P = 0.026), and the 3D capillary network analysis indicated a higher capillary length per muscle volume in the gluteus maximus of diabetic mice compared to controls (P < 0.05). Overall, T1DM induced significant changes in the skeletal muscle, including shifts in MyHC fibre types, decreased fibre diameters, and increased relative capillarisation, possibly due to muscle fibre atrophy. Our findings emphasize the superior detail provided by the 3D analytical method for characterizing skeletal muscle capillary architecture, highlighting caution in interpreting 2D data for capillary changes in T1DM.
Department of Animal Science Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Institute of Anatomy Faculty of Medicine University of Ljubljana Ljubljana Slovenia
Zobrazit více v PubMed
Aughsteen AA, Billah Khair AM, Suleiman AA. Quantitative morphometric study of the skeletal muscles of normal and streptozotocin-diabetic rats. J Pancreas [Internet] 2006;7:382–9. Available from: http://www.joplink.net. PubMed
Ndisang JF, Vannacci A, Rastogi S. Insulin resistance, type 1 and type 2 diabetes, and related complications 2017. J Diabetes Res. 2017;2017:1–3. https://doi.org/10.1155/2017/1478294. PubMed PMC
Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metab Clin Exp. 2015;64:1629–39. https://doi.org/10.1016/j.metabol.2015.09.002. PubMed
Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017 Mar 30;3(1):17016. https://doi.org/10.1038/nrdp.2017.16. PubMed
Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL, James DE. Muscle and adipose tissue insulin resistance: malady without mechanism? J Lipid Res. 2019 Oct;60(10):1720–32. https://doi.org/10.1194/jlr.R087510. PubMed PMC
Nutter CA, Jaworski E, Verma SK, Perez-Carrasco Y, Kuyumcu-Martinez MN. Developmentally regulated alternative splicing is perturbed in type 1 diabetic skeletal muscle. Muscle Nerve. 2017 Oct 17;56(4):744–9. https://doi.org/10.1002/mus.25599. PubMed PMC
Hegarty P V, Rosholt MN. Effects of streptozotocin-induced diabetes on the number and diameter of fibres in different skeletal muscles of the rat. J Anat. 1981;133(Pt 2):205–11. PubMed PMC
Almeida S, Riddell MC, Cafarelli E. Slower conduction velocity and motor unit discharge frequency are associated with muscle fatigue during isometric exercise in type 1 diabetes mellitus. Muscle Nerve. 2008 Feb;37(2):231–40. https://doi.org/10.1002/mus.20919. PubMed
Cvetko E, Karen P, Eržen I. Myosin heavy chain composition of the human sternocleidomastoid muscle. Ann Anat. 2012 Sep;194(5):467–72. https://doi.org/10.1016/j.aanat.2012.05.001. PubMed
Umek N, Horvat S, Cvetko E. Skeletal muscle and fiber type-specific intramyocellular lipid accumulation in obese mice. Bosn J Basic Med Sci. 2021 Oct 22;21(6):729–37. https://doi.org/10.17305/bjbms.2021.5876. PubMed PMC
Idris I, Gray S, Donnely R. Insulin action in skeletal muscle. Ann N Y Acad Sci [Internet] 2006 Jan 24;967(1):176–82. Available from: https://doi.org/10.1111/j.1749-6632.2002.tb04274.x. PubMed
Lefaucheur L. A second look into fibre typing—Relation to meat quality. Meat Sci. 2010 Feb;84(2):257–70. https://doi.org/10.1016/j.meatsci.2009.05.004. PubMed
Coleman SK. Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World J Diabetes. 2015;6(17):1323. https://doi.org/10.4239/wjd.v6.i17.1323. PubMed PMC
Ozaki K, Matsuura T, Narama I. Histochemical and morphometrical analysis of skeletal muscle in spontaneous diabetic WBN/Kob rat. Acta Neuropathol. 2001 Sep;102(3):264–70. https://doi.org/10.1007/s004010100363. PubMed
Klueber KM, Feczko JD. Ultrastructural, histochemical, and morphometric analysis of skeletal muscle in a murine model of type I diabetes. Anat Rec. 1994 May;239(1):18–34. https://doi.org/10.1002/ar.1092390104. PubMed
Armstrong RB, Gollnick PD, Ianuzzo CD. Histochemical properties of skeletal muscle fibers in streptozotocin-diabetic rats. Cell Tissue Res. 1975 Oct;162(3):388–93. https://doi.org/10.1007/BF00220185. PubMed
Fritzsche K, Blüher M, Schering S, Buchwalow I, Kern M, Linke A, et al. Metabolic profile and nitric oxide synthase expression of skeletal muscle fibers are altered in patients with type 1 diabetes. Exp Clin Endocrinol Diabetes. 2008 May 9;116(10):606–13. https://doi.org/10.1055/s-2008-1073126. PubMed
D’Souza DM, Al-Sajee D, Hawke TJ. Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol. 2013 Dec;4:379. https://doi.org/10.3389/fphys.2013.00379. PubMed PMC
Andersen H, Gadeberg PC, Brock B, Jakobsen J. Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia. 1997 Aug 19;40(9):1062–9. https://doi.org/10.1007/s001250050788. PubMed
Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969 Nov 1;48(11):2129–39. https://doi.org/10.1172/JCI106180. PubMed PMC
Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia. 2000 Nov 30;43(12):1528–33. https://doi.org/10.1007/s001250051564. PubMed
Fahim MA, el-Sabban F, Davidson N. Muscle contractility decrement and correlated morphology during the pathogenesis of streptozotocin-diabetic mice. Anat Rec. 1998 Jun;251(2):240–4. https://doi.org/10.1002/(SICI)1097-0185(199806)251:2∖textless{}240::AID-AR13∖textgreater{}3.0.CO;2-O. PubMed
Krause MP, Riddell MC, Gordon CS, Abdullah S, Cafarelli E, Hawke TJ. Diabetic myopathy differs between Ins2 Akita/ and streptozotocin-induced type 1 diabetic models. J Appl Physiol [Internet] 2009;106:1650–9. Available from: https://doi.org/10.1152/japplphysiol.91565.2008. PubMed
Tamaki T, Muramatsu K, Ikutomo M, Oshiro N, Hayashi H, Niwa M. Effects of streptozotocin-induced diabetes on leg muscle contractile properties and motor neuron morphology in rats. Anat Sci Int. 2018 Sep 6;93(4):502–13. https://doi.org/10.1007/s12565-018-0444-z. PubMed
Chao TT, Ianuzzo CD, Armstrong RB, Albright JT, Anapolle SE. Ultrastructural alterations in skeletal muscle fibers of streptozotocin-diabetic rats. Cell Tissue Res. 1976 May;168(2):239–46. https://doi.org/10.1007/BF00215880. PubMed
Sexton WL, Poole DC, Mathieu-Costello O. Microcirculatory structure-function relationships in skeletal muscle of diabetic rats. Amer J Physiol Heart Circ Physiol. 1994 Apr 1;266(4):H1502–11. https://doi.org/10.1152/ajpheart.1994.266.4.H1502. PubMed
Umek N, Janáček J, Cvetko E, Eržen I. Horizontal deformation of skeletal muscle thick sections visualised by confocal microscopy. J Microsc. 2021 May 24;282(2):113–22. https://doi.org/10.1111/jmi.12985. PubMed
Čebašek V, Eržen I, Vyhnal A, Janáček J, Ribarič S, Kubínová L. The estimation error of skeletal muscle capillary supply is significantly reduced by 3D method. Microvasc Res. 2010 Jan;79(1):40–6. https://doi.org/10.1016/j.mvr.2009.11.005. PubMed
Schaad L, Hlushchuk R, Barré S, Gianni-Barrera R, Haberthür D, Banfi A, et al. Correlative imaging of the murine hind limb vasculature and muscle tissue by MicroCT and light microscopy. Sci Rep. 2017 Feb 7;7(1):41842. https://doi.org/10.1038/srep41842. PubMed PMC
Eržen I, Janáček J, Kubinová L. Characterization of the capillary network in skeletal muscles from 3D data. Physiol Res. 2011 Feb 28;60:1–13. https://doi.org/10.33549/physiolres.931988. PubMed
Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. 2021 Apr 27;1(4) https://doi.org/10.1002/cpz1.78. PubMed
Saadane A, Lessieur EM, Du Y, Liu H, Kern TS. Successful induction of diabetes in mice demonstrates no gender difference in development of early diabetic retinopathy. PLoS One. 2020 Sep 17;15(9):e0238727. https://doi.org/10.1371/journal.pone.0238727. PubMed PMC
Pan H, Ding Y, Yan N, Nie Y, Li M, Tong L. Trehalose prevents sciatic nerve damage to and apoptosis of Schwann cells of streptozotocin-induced diabetic C57BL/6J mice. Biomed Pharmacother. 2018 Sep;105:907–14. https://doi.org/10.1016/j.biopha.2018.06.069. PubMed
Markova L, Umek N, Horvat S, Hadžić A, Kuroda M, Pintarič TS, et al. Neurotoxicity of bupivacaine and liposome bupivacaine after sciatic nerve block in healthy and streptozotocin-induced diabetic mice. BMC Vet Res. 2020 Jul 17;16(1):247. https://doi.org/10.1186/s12917-020-02459-4. PubMed PMC
Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 1989 Jun;10(3):197–205. https://doi.org/10.1007/BF01739810. PubMed
Lucas CA, Kang LHD, Hoh JFY. Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochem Biophys Res Commun. 2000 May;272(1):303–8. https://doi.org/10.1006/bbrc.2000.2768. PubMed
Karen P, Števanec M, Smerdu V, Cvetko E, Kubínová L, Eržen I. Software for muscle fibre type classification and analysis. Eur J Histochem. 2009 Aug 17;53(2):11. https://doi.org/10.4081/ejh.2009.e11. PubMed
Laitinen L. Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem J. 1987 Apr;19(4):225–34. https://doi.org/10.1007/BF01680633. PubMed
Eržen I, Janáček J, Kreft M, Kubínová L, Cvetko E. Capillary Network morphometry of pig soleus muscle significantly changes in 24 hours after death. J Histochem Cytochem. 2018 Jan 2;66(1):23–31. https://doi.org/10.1369/0022155417737061. PubMed PMC
Janáček J, Čebašek V, Kubínová L, Ribarič S, Eržen I. 3D visualization and measurement of capillaries supplying metabolically different fiber types in the rat extensor digitorum longus muscle during denervation and reinnervation. J Histochem Cytochem. 2009 May 5;57(5):437–47. https://doi.org/10.1369/jhc.2008.953018. PubMed PMC
Jun L, Robinson M, Geetha T, Broderick TL, Babu JR. Prevalence and mechanisms of skeletal muscle atrophy in metabolic conditions. Int J Mol Sci. 2023 Feb 3;24(3):2973. https://doi.org/10.3390/ijms24032973. PubMed PMC
Shen Y, Li M, Wang K, Qi G, Liu H, Wang W, et al. Diabetic muscular atrophy: molecular mechanisms and promising therapies. Front Endocrinol (Lausanne) 2022 Jun 30;13:917113. https://doi.org/10.3389/fendo.2022.917113. PubMed PMC
Bhardwaj G, Penniman CM, Jena J, Suarez Beltran PA, Foster C, Poro K, et al. Insulin and IGF-1 receptors regulate complex I–dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle. J Clin Invest. 2021 Sep 15;131(18):e146415. https://doi.org/10.1172/JCI146415. PubMed PMC
Saliu TP, Kumrungsee T, Miyata K, Tominaga H, Yazawa N, Hashimoto K, et al. Comparative study on molecular mechanism of diabetic myopathy in two different types of streptozotocin-induced diabetic models. Life Sci. 2022 Jan;288:120183. https://doi.org/10.1016/j.lfs.2021.120183. PubMed
Jerković R, Bosnar A, Jurisić-Erzen D, Azman J, Starcević-Klasan G, Peharec S, et al. The effects of long-term experimental diabetes mellitus type I on skeletal muscle regeneration capacity. Coll Antropol. 2009;33(4):1115–9. PubMed
Torgan CE, Brozinick JT, Kastello GM, Ivy JL. Muscle morphological and biochemical adaptations to training in obese Zucker rats. J Appl Physiol. 1989 Nov 1;67(5):1807–13. https://doi.org/10.1152/jappl.1989.67.5.1807. PubMed
Kivelä R, Silvennoinen M, Touvra AM, Maarit Lehti T, Kainulainen H, Vihko V, et al. Effects of experimental type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle. FASEB J. 2006 Jul;20(9):1570–2. https://doi.org/10.1096/fj.05-4780fje. PubMed
Aiken J, Mandel ER, Riddell MC, Birot O. Hyperglycaemia correlates with skeletal muscle capillary regression and is associated with alterations in the murine double minute-2/forkhead box O1/thrombospondin-1 pathway in type 1 diabetic BioBreeding rats. Diab Vasc Dis Res. 2019 Jan 26;16(1):28–37. https://doi.org/10.1177/1479164118805928. PubMed
Gomes JLP, Fernandes T, Soci UPR, Silveira AC, Barretti DLM, Negrão CE, et al. Obesity downregulates MicroRNA-126 inducing capillary rarefaction in skeletal muscle: effects of aerobic exercise training. Oxid Med Cell Longev. 2017;2017:1–9. https://doi.org/10.1155/2017/2415246. PubMed PMC
Kindig CA, Sexton WL, Fedde MR, Poole DC. Skeletal muscle microcirculatory structure and hemodynamics in diabetes. Respir Physiol. 1998 Feb;111(2):163–75. https://doi.org/10.1016/S0034-5687(97)00122-9. PubMed
Poole DC, Batra S, Mathieu-Costello O, Rakusan K. Capillary geometrical changes with fiber shortening in rat myocardium. Circ Res. 1992 Apr;70(4):697–706. https://doi.org/10.1161/01.RES.70.4.697. PubMed
Ahmed S, Egginton S, Jakeman P, Mannion A, Ross H. Is human skeletal muscle capillary supply modelled according to fibre size or fibre type? Exp Physiol. 1997 Jan 1;82(1):231–4. https://doi.org/10.1113/expphysiol.1997.sp004012. PubMed
Montero D. Comment on Prior et al. Increased skeletal muscle capillarization independently enhances insulin sensitivity in older adults after exercise training and detraining. Diabetes. 2016 Mar 1;65(3):e11–2. https://doi.org/10.2337/db15-1461. PubMed
Cassin S, Gilbert R, Bunnell C, Johnson E. Capillary development during exposure to chronic hypoxia. Am J Physiol Legacy Content. 1971 Feb 1;220(2):448–51. https://doi.org/10.1152/ajplegacy.1971.220.2.448. PubMed
Christensen DJ, Nedergaard M. Random access multiphoton (RAMP) microscopy for investigation of cerebral blood flow regulation mechanisms [Internet]. In: Periasamy A, König K, So PTC, editors. San Francisco(CA): SPIE; 2012. p. 822633. Available from: https://doi.org/10.1117/12.907141. PubMed PMC
Buchacker T, Mühlfeld C, Wrede C, Wagner WL, Beare R, McCormick M, et al. Assessment of the alveolar capillary network in the postnatal mouse lung in 3D using serial block-face scanning electron microscopy. Front Physiol. 2019 Nov 21;10:1357. https://doi.org/10.3389/fphys.2019.01357. PubMed PMC
Schneider B, Kopf KW, Mason E, Dawson M, Coronado Escobar D, Majka SM. Microcomputed tomography visualization and quantitation of the pulmonary arterial microvascular tree in mouse models of chronic lung disease. Pulm Circ. 2023 Jul 27;13(3):e12279. https://doi.org/10.1002/pul2.12279. PubMed PMC
Epah J, Pálfi K, Dienst FL, Malacarne PF, Bremer R, Salamon M, et al. 3D imaging and quantitative analysis of vascular networks: a comparison of ultramicroscopy and micro-computed tomography. Theranostics. 2018;8(8):2117–33. https://doi.org/10.7150/thno.22610. PubMed PMC
Lundsgaard AM, Kiens B. Gender differences in skeletal muscle substrate metabolism—Molecular mechanisms and insulin sensitivity. Front Endocrinol (Lausanne) 2014 Nov 13;5:195. https://doi.org/10.3389/fendo.2014.00195. PubMed PMC
Green S, Kiely C, O’Connor E, Gildea N, O’Shea D, Egaña M. Differential effects of sex on adaptive responses of skeletal muscle vasodilation to exercise training in type 2 diabetes. J Diabetes Complications. 2022 Jan;36(1):108098. https://doi.org/10.1016/j.jdiacomp.2021.108098. PubMed
Čebašek V, Ribarič S. Changes in local capillarity of pure and hybrid MyHC muscle fiber types after nerve injury in rat extensor digitorum longus muscle (EDL) Histochem Cell Biol. 2019 Aug 16;152(2):89–107. https://doi.org/10.1007/s00418-019-01787-3. PubMed
Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen H. Accelerated atrophy of lower leg and foot muscles—A follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI) Diabetologia. 2009 Jun 12;52(6):1182–91. https://doi.org/10.1007/s00125-009-1320-0. PubMed
Johnston APW, Campbell JE, Found JG, Riddell MC, Hawke TJ. Streptozotocin induces G2 arrest in skeletal muscle myoblasts and impairs muscle growth in vivo. Am J Physiol Cell Physiol. 2007 Mar;292(3):C1033–40. https://doi.org/10.1152/ajpcell.00338.2006. PubMed
Hidmark AS, Nawroth PP, Fleming T. STZ causes depletion of immune cells in sciatic nerve and dorsal root ganglion in experimental diabetes. J Neuroimmunol. 2017 May 15;306:76–82. https://doi.org/10.1016/j.jneuroim.2017.03.008. PubMed