In Vitro and In Silico Studies of Functionalized Polyurethane Surfaces toward Understanding Biologically Relevant Interactions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37909715
PubMed Central
PMC10646850
DOI
10.1021/acsbiomaterials.3c01367
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria adhesion, biocompatibility, molecular dynamics, oxygen plasma, polyurethane,
- MeSH
- biokompatibilní materiály * MeSH
- kyslík MeSH
- polyurethany * chemie MeSH
- povrchové vlastnosti MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály * MeSH
- kyslík MeSH
- polyurethany * MeSH
- voda MeSH
The solid-aqueous boundary formed upon biomaterial implantation provides a playground for most biochemical reactions and physiological processes involved in implant-host interactions. Therefore, for biomaterial development, optimization, and application, it is essential to understand the biomaterial-water interface in depth. In this study, oxygen plasma-functionalized polyurethane surfaces that can be successfully utilized in contact with the tissue of the respiratory system were prepared and investigated. Through experiments, the influence of plasma treatment on the physicochemical properties of polyurethane was investigated by atomic force microscopy, attenuated total reflection infrared spectroscopy, differential thermal analysis, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and contact angle measurements, supplemented with biological tests using the A549 cell line and two bacteria strains (Staphylococcus aureus and Pseudomonas aeruginosa). The molecular interpretation of the experimental findings was achieved by molecular dynamics simulations employing newly developed, fully atomistic models of unmodified and plasma-functionalized polyurethane materials to characterize the polyurethane-water interfaces at the nanoscale in detail. The experimentally obtained polar and dispersive surface free energies were consistent with the calculated free energies, verifying the adequacy of the developed models. A 20% substitution of the polymeric chain termini by their oxidized variants was observed in the experimentally obtained plasma-modified polyurethane surface, indicating the surface saturation with oxygen-containing functional groups.
Department of Physics University of Helsinki P O Box 64 FI 00014 Helsinki Finland
Faculty of Chemistry Jagiellonian University in Krakow Gronostajowa 2 30 387 Krakow Poland
Zobrazit více v PubMed
Akindoyo J. O.; Beg M. D. H.; Ghazali S.; Islam M. R.; Jeyaratnam N.; Yuvaraj A. R. Polyurethane Types, Synthesis and Applications-a Review. RSC Adv. 2016, 6, 114453–114482. 10.1039/C6RA14525F. DOI
Cooper S. L.; Guan J.. Advances in Polyurethane Biomaterials; Elsevier Inc., 2016. 10.1016/C2014-0-04143-3. DOI
Szycher’s Handbook of Polyurethanes; Szychler M., Ed.; CRC Press, 2012; pp 20–3110.1201/b12343-6. DOI
Lamba N. M. K.; Woodhouse K. A.; Cooper S. L.. Polyurethanes in Biomedical Applications; CRC Press, 2017. 10.1201/9780203742785. DOI
Engels H. W.; Pirkl H. G.; Albers R.; Albach R. W.; Krause J.; Hoffmann A.; Casselmann H.; Dormish J. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angew. Chem. Int. Ed 2013, 52 (36), 9422–9441. 10.1002/anie.201302766. PubMed DOI
Kanyanta V.; Ivankovic A. Mechanical Characterisation of Polyurethane Elastomer for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2010, 3 (1), 51–62. 10.1016/j.jmbbm.2009.03.005. PubMed DOI
Solanki A.; Das M.; Thakore S. A Review on Carbohydrate Embedded Polyurethanes: An Emerging Area in the Scope of Biomedical Applications. Carbohydr. Polym. 2018, 181, 1003–1016. 10.1016/j.carbpol.2017.11.049. PubMed DOI
Lligadas G.; Ronda J. C.; Galià M.; Cádiz V. Poly(Ether Urethane) Networks from Renewable Resources as Candidate Biomaterials: Synthesis and Characterization. Biomacromolecules 2007, 8 (2), 686–692. 10.1021/bm060977h. PubMed DOI
Brannigan R. P.; Dove A. P. Synthesis, Properties and Biomedical Applications of Hydrolytically Degradable Materials Based on Aliphatic Polyesters and Polycarbonates. Biomater. Sci. 2017, 5 (1), 9–21. 10.1039/C6BM00584E. PubMed DOI
Pereira I. H. L.; Ayres E.; Patrício P. S.; Góes A. M.; Gomide V. S.; Junior E. P.; Oréfice R. L. Photopolymerizable and Injectable Polyurethanes for Biomedical Applications: Synthesis and Biocompatibility. Acta Biomater. 2010, 6 (8), 3056–3066. 10.1016/j.actbio.2010.02.036. PubMed DOI
Marzec M.; Kucińska-Lipka J.; Kalaszczyńska I.; Janik H. Development of Polyurethanes for Bone Repair. Mater. Sci. Eng., C 2017, 80, 736–747. 10.1016/j.msec.2017.07.047. PubMed DOI
Chen Q.; Liang S.; Thouas G. A. Elastomeric Biomaterials for Tissue Engineering. Prog. Polym. Sci. 2013, 38 (3–4), 584–671. 10.1016/j.progpolymsci.2012.05.003. DOI
Kim S.; Liu S. Smart and Biostable Polyurethanes for Long-Term Implants. ACS Biomater. Sci. Eng. 2018, 4 (5), 1479–1490. 10.1021/acsbiomaterials.8b00301. PubMed DOI
Janik H.; Marzec M. A Review: Fabrication of Porous Polyurethane Scaffolds. Mater. Sci. Eng., C 2015, 48, 586–591. 10.1016/j.msec.2014.12.037. PubMed DOI
Zare M.; Zare M.; Butler J. A.; Ramakrishna S. Nanoscience-Led Antimicrobial Surface Engineering to Prevent Infections. ACS Appl. Nano Mater. 2021, 4 (5), 4269–4283. 10.1021/acsanm.1c00466. DOI
Adipurnama I.; Yang M. C.; Ciach T.; Butruk-Raszeja B. Surface Modification and Endothelialization of Polyurethane for Vascular Tissue Engineering Applications: A Review. Biomater. Sci. 2017, 5 (1), 22–37. 10.1039/C6BM00618C. PubMed DOI
Xu C.; Okpokwasili C.; Huang Y.; Shi X.; Wu J.; Liao J.; Tang L.; Hong Y. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomater. Sci. Eng. 2020, 6 (5), 2757–2769. 10.1021/acsbiomaterials.9b01860. PubMed DOI PMC
Gentleman M. M.; Gentleman E. The Role of Surface Free Energy in Osteoblast–Biomaterial Interactions. Int. Mater. Rev. 2014, 59 (8), 417–429. 10.1179/1743280414Y.0000000038. DOI
Zhu G.; Xu Z.; Yan L. T. Entropy at Bio-Nano Interfaces. Nano Lett. 2020, 20 (8), 5616–5624. 10.1021/acs.nanolett.0c02635. PubMed DOI
Amani H.; Arzaghi H.; Bayandori M.; Dezfuli A. S.; Pazoki-Toroudi H.; Shafiee A.; Moradi L. Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Adv. Mater. Interfaces 2019, 6 (13), 190057210.1002/admi.201900572. DOI
Nasser M.; AlMandalawi B.; Nasser L. Atmospheric Plasma Jet for Surface Treatment of Biomaterials. J. Phys. Commun. 2022, 6 (10), 10500510.1088/2399-6528/ac98f3. DOI
Bazaka K.; Jacob M. V.; Crawford R. J.; Ivanova E. P. Plasma-Assisted Surface Modification of Organic Biopolymers to Prevent Bacterial Attachment. Acta Biomater. 2011, 7 (5), 2015–2028. 10.1016/j.actbio.2010.12.024. PubMed DOI
Morelli A.; Hawker M. J. Utilizing Radio Frequency Plasma Treatment to Modify Polymeric Materials for Biomedical Applications. ACS Biomater. Sci. Eng. 2023, 9, 3760.10.1021/acsbiomaterials.0c01673. PubMed DOI
Oh J. H.; Moon M. W.; Park C. H. Effect of Crystallinity on the Recovery Rate of Superhydrophobicity in Plasma-Nanostructured Polymers. RSC Adv. 2020, 10 (18), 10939.10.1039/D0RA00098A. PubMed DOI PMC
Fedel M.; Micheli V.; Thaler M.; Awaja F. Effect of Nitrogen Plasma Treatment on the Crystallinity and Self-Bonding of Polyetheretherketone (PEEK) for Biomedical Applications. Polym. Adv. Technol. 2020, 31 (2), 240–247. 10.1002/pat.4764. PubMed DOI PMC
Vesel A.; Mozetic M. New Developments in Surface Functionalization of Polymers Using Controlled Plasma Treatments. J. Phys. D: Appl. Phys. 2017, 50 (29), 29300110.1088/1361-6463/aa748a. DOI
Richbourg N. R.; Peppas N. A.; Sikavitsas V. I. Tuning the Biomimetic Behavior of Scaffolds for Regenerative Medicine through Surface Modifications. J. Tissue Eng. Regen Med. 2019, 13 (8), 1275–1293. 10.1002/term.2859. PubMed DOI PMC
Karunarathna B.; Jayakody R. S.; Karunanayake L.; Govender K. K. Computational Development and Validation of a Representative MDI-BDO–Based Polyurethane Hard Segment Model. J. Mol. Model. 2021, 27 (2), 1–20. 10.1007/S00894-020-04660-6/TABLES/5. PubMed DOI
Park S.; Moon J.; Kim B.; Cho M. Multi-Scale Coarse-Grained Molecular Dynamics Simulation to Investigate the Thermo-Mechanical Behavior of Shape-Memory Polyurethane Copolymers. Polymer 2021, 213, 12322810.1016/j.polymer.2020.123228. DOI
Goclon J.; Panczyk T.; Winkler K. Investigation of the Interfacial Properties of Polyurethane/Carbon Nanotube Hybrid Composites: A Molecular Dynamics Study. Appl. Surf. Sci. 2018, 433, 213–221. 10.1016/j.apsusc.2017.09.192. DOI
Guo R.; Tan Z.; Xu K.; Yan L. T. Length-Dependent Assembly of a Stiff Polymer Chain at the Interface of a Carbon Nanotube. ACS Macro Lett. 2012, 1 (8), 977–981. 10.1021/mz300221s. PubMed DOI
Golda-Cepa M.; Brzychczy-Wloch M.; Engvall K.; Aminlashgari N.; Hakkarainen M.; Kotarba A. Microbiological Investigations of Oxygen Plasma Treated Parylene C Surfaces for Metal Implant Coating. Mater. Sci. Eng., C 2015, 52, 273–281. 10.1016/j.msec.2015.03.060. PubMed DOI
Golda-Cepa M.; Chorylek A.; Chytrosz P.; Brzychczy-Wloch M.; Jaworska J.; Kasperczyk J.; Hakkarainen M.; Engvall K.; Kotarba A. Multifunctional PLGA/Parylene C Coating for Implant Materials: An Integral Approach for Biointerface Optimization. ACS Appl. Mater. Interfaces 2016, 8 (34), 22093–22105. 10.1021/acsami.6b08025. PubMed DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindah E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/J.SOFTX.2015.06.001. DOI
Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; Shaw D. E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field. Proteins: Struct., Funct., Bioinf. 2010, 78 (8), 1950–1958. 10.1002/prot.22711. PubMed DOI PMC
Frisch M. J.; Trucks G. W.; Schlegel G. H. B.; Scuseria E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ort J. V.; Wallingford D. J. F.. Gaussian: CT, 2016.
Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157–1174. 10.1002/jcc.20035. PubMed DOI
Chen F.; Smith P. E. Simulated Surface Tensions of Common Water Models. J. Chem. Phys. 2007, 126 (22), 22110110.1063/1.2745718. PubMed DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1998, 103 (19), 8577.10.1063/1.470117. DOI
Nosé S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52 (2), 255–268. 10.1080/00268978400101201. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126 (1), 01410110.1063/1.2408420. PubMed DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463147210.1002/(SICI)1096-987X(199709)18:12. DOI
Martinez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30 (13), 2157–2164. 10.1002/jcc.21224. PubMed DOI
Zandén C.; Voinova M.; Gold J.; Mörsdorf D.; Bernhardt I.; Liu J. Surface Characterisation of Oxygen Plasma Treated Electrospun Polyurethane Fibres and Their Interaction with Red Blood Cells. Eur. Polym. J. 2012, 48 (3), 472–482. 10.1016/j.eurpolymj.2012.01.004. DOI
Wilson D. J.; Rhodes N. P.; Williams R. L. Surface Modification of a Segmented Polyetherurethane Using a Low-Powered Gas Plasma and Its Influence on the Activation of the Coagulation System. Biomaterials 2003, 24 (28), 5069–5081. 10.1016/S0142-9612(03)00423-X. PubMed DOI
Sanchis M. R.; Calvo O.; Fenollar O.; Garcia D.; Balart R. Characterization of the Surface Changes and the Aging Effects of Low-Pressure Nitrogen Plasma Treatment in a Polyurethane Film. Polym. Test 2008, 27 (1), 75–83. 10.1016/j.polymertesting.2007.09.002. DOI
Golda-Cepa M.; Engvall K.; Kotarba A. Development of Crystalline–Amorphous Parylene C Structure in Micro- and Nano-Range towards Enhanced Biocompatibility: The Importance of Oxygen Plasma Treatment Time. RSC Adv. 2015, 5 (60), 48816–48821. 10.1039/C5RA06366C. DOI
Golda-Cepa M.; Engvall K.; Hakkarainen M.; Kotarba A. Recent Progress on Parylene C Polymer for Biomedical Applications: A Review. Prog. Org. Coat. 2020, 140, 10549310.1016/j.porgcoat.2019.105493. DOI
Bax D. V.; Kondyurin A.; Waterhouse A.; McKenzie D. R.; Weiss A. S.; Bilek M. M. M. Surface Plasma Modification and Tropoelastin Coating of a Polyurethane Co-Polymer for Enhanced Cell Attachment and Reduced Thrombogenicity. Biomaterials 2014, 35 (25), 6797–6809. 10.1016/j.biomaterials.2014.04.082. PubMed DOI
Fu X.; Jenkins M. J.; Sun G.; Bertoti I.; Dong H. Characterization of Active Screen Plasma Modified Polyurethane Surfaces. Surf. Coat. Technol. 2012, 206 (23), 4799–4807. 10.1016/j.surfcoat.2012.04.051. DOI
Filip D.; MacOcinschi D.; Vlad S. Thermogravimetric Study for Polyurethane Materials for Biomedical Applications. Composites, Part B 2011, 42 (6), 1474–1479. 10.1016/j.compositesb.2011.04.050. DOI
Friedrich J.The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design; John Wiley&Sons, 201210.1002/9783527648009. DOI
Briggs D.Surface Analysis of Polymers by XPS and Static SIMS; Cambridge University Press, 199810.1017/CBO9780511525261. DOI
Kovač J. Surface Characterization of Polymers by XPS and SIMS Techniques. Mater. Tehnol 2011, 45 (3), 191–197.
Felgueiras H. P.; Antunes J. C.; Martins M. C. L.; Barbosa M. A.. Fundamentals of Protein and Cell Interactions in Biomaterials. Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair; Woodhead Publishing; 2018, 1–27. 10.1016/B978-0-08-100803-4.00001-2. DOI
Metwally S.; Stachewicz U. Surface Potential and Charges Impact on Cell Responses on Biomaterials Interfaces for Medical Applications. Mater. Sci. Eng., C 2019, 104, 10988310.1016/j.msec.2019.109883. PubMed DOI
Recek N.; Mozetic M.; Jaganjac M.; Milkovic L.; Zarkovic N.; Vesel A. Adsorption of Proteins and Cell Adhesion to Plasma Treated Polymer Substrates. Int. J. Polym. Mater. Polym. Biomater. 2014, 63 (13), 685–691. 10.1080/00914037.2013.854243. DOI
Yoon J.-Y.Focal Adhesion. In Tissue Engineering; Springer, 2022; pp 123–13510.1007/978-3-030-83696-2_7. DOI
Lewis K. B.; Ratner B. D. Observation of Surface Rearrangement of Polymers Using ESCA. J. Colloid Interface Sci. 1993, 159 (1), 77–85. 10.1006/jcis.1993.1299. DOI
Xu L. C.; Soman P.; Runt J.; Siedlecki C. A. Characterization of Surface Microphase Structures of Poly(Urethane Urea) Biomaterials by Nanoscale Indentation with AFM. J. Biomater. Sci., Polym. Ed. 2007, 18 (4), 353–368. 10.1163/156856207780425013. PubMed DOI