In Vitro and In Silico Studies of Functionalized Polyurethane Surfaces toward Understanding Biologically Relevant Interactions

. 2023 Nov 13 ; 9 (11) : 6112-6122. [epub] 20231101

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37909715

The solid-aqueous boundary formed upon biomaterial implantation provides a playground for most biochemical reactions and physiological processes involved in implant-host interactions. Therefore, for biomaterial development, optimization, and application, it is essential to understand the biomaterial-water interface in depth. In this study, oxygen plasma-functionalized polyurethane surfaces that can be successfully utilized in contact with the tissue of the respiratory system were prepared and investigated. Through experiments, the influence of plasma treatment on the physicochemical properties of polyurethane was investigated by atomic force microscopy, attenuated total reflection infrared spectroscopy, differential thermal analysis, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and contact angle measurements, supplemented with biological tests using the A549 cell line and two bacteria strains (Staphylococcus aureus and Pseudomonas aeruginosa). The molecular interpretation of the experimental findings was achieved by molecular dynamics simulations employing newly developed, fully atomistic models of unmodified and plasma-functionalized polyurethane materials to characterize the polyurethane-water interfaces at the nanoscale in detail. The experimentally obtained polar and dispersive surface free energies were consistent with the calculated free energies, verifying the adequacy of the developed models. A 20% substitution of the polymeric chain termini by their oxidized variants was observed in the experimentally obtained plasma-modified polyurethane surface, indicating the surface saturation with oxygen-containing functional groups.

Zobrazit více v PubMed

Akindoyo J. O.; Beg M. D. H.; Ghazali S.; Islam M. R.; Jeyaratnam N.; Yuvaraj A. R. Polyurethane Types, Synthesis and Applications-a Review. RSC Adv. 2016, 6, 114453–114482. 10.1039/C6RA14525F. DOI

Cooper S. L.; Guan J.. Advances in Polyurethane Biomaterials; Elsevier Inc., 2016. 10.1016/C2014-0-04143-3. DOI

Szycher’s Handbook of Polyurethanes; Szychler M., Ed.; CRC Press, 2012; pp 20–3110.1201/b12343-6. DOI

Lamba N. M. K.; Woodhouse K. A.; Cooper S. L.. Polyurethanes in Biomedical Applications; CRC Press, 2017. 10.1201/9780203742785. DOI

Engels H. W.; Pirkl H. G.; Albers R.; Albach R. W.; Krause J.; Hoffmann A.; Casselmann H.; Dormish J. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angew. Chem. Int. Ed 2013, 52 (36), 9422–9441. 10.1002/anie.201302766. PubMed DOI

Kanyanta V.; Ivankovic A. Mechanical Characterisation of Polyurethane Elastomer for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2010, 3 (1), 51–62. 10.1016/j.jmbbm.2009.03.005. PubMed DOI

Solanki A.; Das M.; Thakore S. A Review on Carbohydrate Embedded Polyurethanes: An Emerging Area in the Scope of Biomedical Applications. Carbohydr. Polym. 2018, 181, 1003–1016. 10.1016/j.carbpol.2017.11.049. PubMed DOI

Lligadas G.; Ronda J. C.; Galià M.; Cádiz V. Poly(Ether Urethane) Networks from Renewable Resources as Candidate Biomaterials: Synthesis and Characterization. Biomacromolecules 2007, 8 (2), 686–692. 10.1021/bm060977h. PubMed DOI

Brannigan R. P.; Dove A. P. Synthesis, Properties and Biomedical Applications of Hydrolytically Degradable Materials Based on Aliphatic Polyesters and Polycarbonates. Biomater. Sci. 2017, 5 (1), 9–21. 10.1039/C6BM00584E. PubMed DOI

Pereira I. H. L.; Ayres E.; Patrício P. S.; Góes A. M.; Gomide V. S.; Junior E. P.; Oréfice R. L. Photopolymerizable and Injectable Polyurethanes for Biomedical Applications: Synthesis and Biocompatibility. Acta Biomater. 2010, 6 (8), 3056–3066. 10.1016/j.actbio.2010.02.036. PubMed DOI

Marzec M.; Kucińska-Lipka J.; Kalaszczyńska I.; Janik H. Development of Polyurethanes for Bone Repair. Mater. Sci. Eng., C 2017, 80, 736–747. 10.1016/j.msec.2017.07.047. PubMed DOI

Chen Q.; Liang S.; Thouas G. A. Elastomeric Biomaterials for Tissue Engineering. Prog. Polym. Sci. 2013, 38 (3–4), 584–671. 10.1016/j.progpolymsci.2012.05.003. DOI

Kim S.; Liu S. Smart and Biostable Polyurethanes for Long-Term Implants. ACS Biomater. Sci. Eng. 2018, 4 (5), 1479–1490. 10.1021/acsbiomaterials.8b00301. PubMed DOI

Janik H.; Marzec M. A Review: Fabrication of Porous Polyurethane Scaffolds. Mater. Sci. Eng., C 2015, 48, 586–591. 10.1016/j.msec.2014.12.037. PubMed DOI

Zare M.; Zare M.; Butler J. A.; Ramakrishna S. Nanoscience-Led Antimicrobial Surface Engineering to Prevent Infections. ACS Appl. Nano Mater. 2021, 4 (5), 4269–4283. 10.1021/acsanm.1c00466. DOI

Adipurnama I.; Yang M. C.; Ciach T.; Butruk-Raszeja B. Surface Modification and Endothelialization of Polyurethane for Vascular Tissue Engineering Applications: A Review. Biomater. Sci. 2017, 5 (1), 22–37. 10.1039/C6BM00618C. PubMed DOI

Xu C.; Okpokwasili C.; Huang Y.; Shi X.; Wu J.; Liao J.; Tang L.; Hong Y. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomater. Sci. Eng. 2020, 6 (5), 2757–2769. 10.1021/acsbiomaterials.9b01860. PubMed DOI PMC

Gentleman M. M.; Gentleman E. The Role of Surface Free Energy in Osteoblast–Biomaterial Interactions. Int. Mater. Rev. 2014, 59 (8), 417–429. 10.1179/1743280414Y.0000000038. DOI

Zhu G.; Xu Z.; Yan L. T. Entropy at Bio-Nano Interfaces. Nano Lett. 2020, 20 (8), 5616–5624. 10.1021/acs.nanolett.0c02635. PubMed DOI

Amani H.; Arzaghi H.; Bayandori M.; Dezfuli A. S.; Pazoki-Toroudi H.; Shafiee A.; Moradi L. Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Adv. Mater. Interfaces 2019, 6 (13), 190057210.1002/admi.201900572. DOI

Nasser M.; AlMandalawi B.; Nasser L. Atmospheric Plasma Jet for Surface Treatment of Biomaterials. J. Phys. Commun. 2022, 6 (10), 10500510.1088/2399-6528/ac98f3. DOI

Bazaka K.; Jacob M. V.; Crawford R. J.; Ivanova E. P. Plasma-Assisted Surface Modification of Organic Biopolymers to Prevent Bacterial Attachment. Acta Biomater. 2011, 7 (5), 2015–2028. 10.1016/j.actbio.2010.12.024. PubMed DOI

Morelli A.; Hawker M. J. Utilizing Radio Frequency Plasma Treatment to Modify Polymeric Materials for Biomedical Applications. ACS Biomater. Sci. Eng. 2023, 9, 3760.10.1021/acsbiomaterials.0c01673. PubMed DOI

Oh J. H.; Moon M. W.; Park C. H. Effect of Crystallinity on the Recovery Rate of Superhydrophobicity in Plasma-Nanostructured Polymers. RSC Adv. 2020, 10 (18), 10939.10.1039/D0RA00098A. PubMed DOI PMC

Fedel M.; Micheli V.; Thaler M.; Awaja F. Effect of Nitrogen Plasma Treatment on the Crystallinity and Self-Bonding of Polyetheretherketone (PEEK) for Biomedical Applications. Polym. Adv. Technol. 2020, 31 (2), 240–247. 10.1002/pat.4764. PubMed DOI PMC

Vesel A.; Mozetic M. New Developments in Surface Functionalization of Polymers Using Controlled Plasma Treatments. J. Phys. D: Appl. Phys. 2017, 50 (29), 29300110.1088/1361-6463/aa748a. DOI

Richbourg N. R.; Peppas N. A.; Sikavitsas V. I. Tuning the Biomimetic Behavior of Scaffolds for Regenerative Medicine through Surface Modifications. J. Tissue Eng. Regen Med. 2019, 13 (8), 1275–1293. 10.1002/term.2859. PubMed DOI PMC

Karunarathna B.; Jayakody R. S.; Karunanayake L.; Govender K. K. Computational Development and Validation of a Representative MDI-BDO–Based Polyurethane Hard Segment Model. J. Mol. Model. 2021, 27 (2), 1–20. 10.1007/S00894-020-04660-6/TABLES/5. PubMed DOI

Park S.; Moon J.; Kim B.; Cho M. Multi-Scale Coarse-Grained Molecular Dynamics Simulation to Investigate the Thermo-Mechanical Behavior of Shape-Memory Polyurethane Copolymers. Polymer 2021, 213, 12322810.1016/j.polymer.2020.123228. DOI

Goclon J.; Panczyk T.; Winkler K. Investigation of the Interfacial Properties of Polyurethane/Carbon Nanotube Hybrid Composites: A Molecular Dynamics Study. Appl. Surf. Sci. 2018, 433, 213–221. 10.1016/j.apsusc.2017.09.192. DOI

Guo R.; Tan Z.; Xu K.; Yan L. T. Length-Dependent Assembly of a Stiff Polymer Chain at the Interface of a Carbon Nanotube. ACS Macro Lett. 2012, 1 (8), 977–981. 10.1021/mz300221s. PubMed DOI

Golda-Cepa M.; Brzychczy-Wloch M.; Engvall K.; Aminlashgari N.; Hakkarainen M.; Kotarba A. Microbiological Investigations of Oxygen Plasma Treated Parylene C Surfaces for Metal Implant Coating. Mater. Sci. Eng., C 2015, 52, 273–281. 10.1016/j.msec.2015.03.060. PubMed DOI

Golda-Cepa M.; Chorylek A.; Chytrosz P.; Brzychczy-Wloch M.; Jaworska J.; Kasperczyk J.; Hakkarainen M.; Engvall K.; Kotarba A. Multifunctional PLGA/Parylene C Coating for Implant Materials: An Integral Approach for Biointerface Optimization. ACS Appl. Mater. Interfaces 2016, 8 (34), 22093–22105. 10.1021/acsami.6b08025. PubMed DOI

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindah E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/J.SOFTX.2015.06.001. DOI

Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; Shaw D. E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field. Proteins: Struct., Funct., Bioinf. 2010, 78 (8), 1950–1958. 10.1002/prot.22711. PubMed DOI PMC

Frisch M. J.; Trucks G. W.; Schlegel G. H. B.; Scuseria E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ort J. V.; Wallingford D. J. F.. Gaussian: CT, 2016.

Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157–1174. 10.1002/jcc.20035. PubMed DOI

Chen F.; Smith P. E. Simulated Surface Tensions of Common Water Models. J. Chem. Phys. 2007, 126 (22), 22110110.1063/1.2745718. PubMed DOI

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1998, 103 (19), 8577.10.1063/1.470117. DOI

Nosé S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52 (2), 255–268. 10.1080/00268978400101201. DOI

Bussi G.; Donadio D.; Parrinello M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126 (1), 01410110.1063/1.2408420. PubMed DOI

Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463147210.1002/(SICI)1096-987X(199709)18:12. DOI

Martinez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30 (13), 2157–2164. 10.1002/jcc.21224. PubMed DOI

Zandén C.; Voinova M.; Gold J.; Mörsdorf D.; Bernhardt I.; Liu J. Surface Characterisation of Oxygen Plasma Treated Electrospun Polyurethane Fibres and Their Interaction with Red Blood Cells. Eur. Polym. J. 2012, 48 (3), 472–482. 10.1016/j.eurpolymj.2012.01.004. DOI

Wilson D. J.; Rhodes N. P.; Williams R. L. Surface Modification of a Segmented Polyetherurethane Using a Low-Powered Gas Plasma and Its Influence on the Activation of the Coagulation System. Biomaterials 2003, 24 (28), 5069–5081. 10.1016/S0142-9612(03)00423-X. PubMed DOI

Sanchis M. R.; Calvo O.; Fenollar O.; Garcia D.; Balart R. Characterization of the Surface Changes and the Aging Effects of Low-Pressure Nitrogen Plasma Treatment in a Polyurethane Film. Polym. Test 2008, 27 (1), 75–83. 10.1016/j.polymertesting.2007.09.002. DOI

Golda-Cepa M.; Engvall K.; Kotarba A. Development of Crystalline–Amorphous Parylene C Structure in Micro- and Nano-Range towards Enhanced Biocompatibility: The Importance of Oxygen Plasma Treatment Time. RSC Adv. 2015, 5 (60), 48816–48821. 10.1039/C5RA06366C. DOI

Golda-Cepa M.; Engvall K.; Hakkarainen M.; Kotarba A. Recent Progress on Parylene C Polymer for Biomedical Applications: A Review. Prog. Org. Coat. 2020, 140, 10549310.1016/j.porgcoat.2019.105493. DOI

Bax D. V.; Kondyurin A.; Waterhouse A.; McKenzie D. R.; Weiss A. S.; Bilek M. M. M. Surface Plasma Modification and Tropoelastin Coating of a Polyurethane Co-Polymer for Enhanced Cell Attachment and Reduced Thrombogenicity. Biomaterials 2014, 35 (25), 6797–6809. 10.1016/j.biomaterials.2014.04.082. PubMed DOI

Fu X.; Jenkins M. J.; Sun G.; Bertoti I.; Dong H. Characterization of Active Screen Plasma Modified Polyurethane Surfaces. Surf. Coat. Technol. 2012, 206 (23), 4799–4807. 10.1016/j.surfcoat.2012.04.051. DOI

Filip D.; MacOcinschi D.; Vlad S. Thermogravimetric Study for Polyurethane Materials for Biomedical Applications. Composites, Part B 2011, 42 (6), 1474–1479. 10.1016/j.compositesb.2011.04.050. DOI

Friedrich J.The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design; John Wiley&Sons, 201210.1002/9783527648009. DOI

Briggs D.Surface Analysis of Polymers by XPS and Static SIMS; Cambridge University Press, 199810.1017/CBO9780511525261. DOI

Kovač J. Surface Characterization of Polymers by XPS and SIMS Techniques. Mater. Tehnol 2011, 45 (3), 191–197.

Felgueiras H. P.; Antunes J. C.; Martins M. C. L.; Barbosa M. A.. Fundamentals of Protein and Cell Interactions in Biomaterials. Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair; Woodhead Publishing; 2018, 1–27. 10.1016/B978-0-08-100803-4.00001-2. DOI

Metwally S.; Stachewicz U. Surface Potential and Charges Impact on Cell Responses on Biomaterials Interfaces for Medical Applications. Mater. Sci. Eng., C 2019, 104, 10988310.1016/j.msec.2019.109883. PubMed DOI

Recek N.; Mozetic M.; Jaganjac M.; Milkovic L.; Zarkovic N.; Vesel A. Adsorption of Proteins and Cell Adhesion to Plasma Treated Polymer Substrates. Int. J. Polym. Mater. Polym. Biomater. 2014, 63 (13), 685–691. 10.1080/00914037.2013.854243. DOI

Yoon J.-Y.Focal Adhesion. In Tissue Engineering; Springer, 2022; pp 123–13510.1007/978-3-030-83696-2_7. DOI

Lewis K. B.; Ratner B. D. Observation of Surface Rearrangement of Polymers Using ESCA. J. Colloid Interface Sci. 1993, 159 (1), 77–85. 10.1006/jcis.1993.1299. DOI

Xu L. C.; Soman P.; Runt J.; Siedlecki C. A. Characterization of Surface Microphase Structures of Poly(Urethane Urea) Biomaterials by Nanoscale Indentation with AFM. J. Biomater. Sci., Polym. Ed. 2007, 18 (4), 353–368. 10.1163/156856207780425013. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...