EasyDock: customizable and scalable docking tool
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LUAUS23262
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
37915072
PubMed Central
PMC10619229
DOI
10.1186/s13321-023-00772-2
PII: 10.1186/s13321-023-00772-2
Knihovny.cz E-zdroje
- Klíčová slova
- AutoDock Vina, Boron-containing compound docking, Distributed docking, Gnina, High-throughput molecular docking,
- Publikační typ
- časopisecké články MeSH
Docking of large compound collections becomes an important procedure to discover new chemical entities. Screening of large sets of compounds may also occur in de novo design projects guided by molecular docking. To facilitate these processes, there is a need for automated tools capable of efficiently docking a large number of molecules using multiple computational nodes within a reasonable timeframe. These tools should also allow for easy integration of new docking programs and provide a user-friendly program interface to support the development of further approaches utilizing docking as a foundation. Currently available tools have certain limitations, such as lacking a convenient program interface or lacking support for distributed computations. In response to these limitations, we have developed a module called EasyDock. It can be deployed over a network of computational nodes using the Dask library, without requiring a specific cluster scheduler. Furthermore, we have proposed and implemented a simple model that predicts the runtime of docking experiments and applied it to minimize overall docking time. The current version of EasyDock supports popular docking programs, namely Autodock Vina, gnina, and smina. Additionally, we implemented a supplementary feature to enable docking of boron-containing compounds, which are not inherently supported by Vina and smina, and demonstrated its applicability on a set of 55 PDB protein-ligand complexes.
Zobrazit více v PubMed
Mayr LM, Bojanic D. Novel trends in high-throughput screening. Curr Opin Pharmacol. 2009;9:580–588. doi: 10.1016/j.coph.2009.08.004. PubMed DOI
Polishchuk PG, Madzhidov TI, Varnek A. Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aid Mol Des. 2013;27:675–679. doi: 10.1007/s10822-013-9672-4. PubMed DOI
Deng H, O’Keefe H, Davie CP, Lind KE, Acharya RA, Franklin GJ, Larkin J, Matico R, Neeb M, Thompson MM, Lohr T, Gross JW, Centrella PA, O’Donovan GK, Bedard KL, van Vloten K, Mataruse S, Skinner SR, Belyanskaya SL, Carpenter TY, Shearer TW, Clark MA, Cuozzo JW, Arico-Muendel CC, Morgan BA. Discovery of highly potent and selective small molecule ADAMTS-5 inhibitors that inhibit human cartilage degradation via Encoded Library Technology (ELT) J Med Chem. 2012;55:7061–7079. doi: 10.1021/jm300449x. PubMed DOI
Kollmann CS, Bai X, Tsai C-H, Yang H, Lind KE, Skinner SR, Zhu Z, Israel DI, Cuozzo JW, Morgan BA, Yuki K, Xie C, Springer TA, Shimaoka M, Evindar G. Application of encoded library technology (ELT) to a protein–protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. Bioorg Med Chem. 2014;22:2353–2365. doi: 10.1016/j.bmc.2014.01.050. PubMed DOI
Chen Q, Li Y, Lin C, Chen L, Luo H, Xia S, Liu C, Cheng X, Liu C, Li J, Dou D. Expanding the DNA-encoded library toolbox: identifying small molecules targeting RNA. Nucl Acids Res. 2022;50:e67–e67. doi: 10.1093/nar/gkac173. PubMed DOI PMC
Gorgulla C, Boeszoermenyi A, Wang Z-F, Fischer PD, Coote PW, Padmanabha Das KM, Malets YS, Radchenko DS, Moroz YS, Scott DA, Fackeldey K, Hoffmann M, Iavniuk I, Wagner G, Arthanari H. An open-source drug discovery platform enables ultra-large virtual screens. Nature. 2020;580:663–668. doi: 10.1038/s41586-020-2117-z. PubMed DOI PMC
Luttens A, Gullberg H, Abdurakhmanov E, Vo DD, Akaberi D, Talibov VO, Nekhotiaeva N, Vangeel L, De Jonghe S, Jochmans D, Krambrich J, Tas A, Lundgren B, Gravenfors Y, Craig AJ, Atilaw Y, Sandström A, Moodie LWK, Lundkvist Ã, van Hemert MJ, Neyts J, Lennerstrand J, Kihlberg J, Sandberg K, Danielson UH, Carlsson J. Ultralarge virtual screening identifies SARS-CoV-2 main protease inhibitors with broad-spectrum activity against coronaviruses. J Am Chem Soc. 2022;144:2905–2920. doi: 10.1021/jacs.1c08402. PubMed DOI PMC
Lyu J, Wang S, Balius TE, Singh I, Levit A, Moroz YS, O’Meara MJ, Che T, Algaa E, Tolmachova K, Tolmachev AA, Shoichet BK, Roth BL, Irwin JJ. Ultra-large library docking for discovering new chemotypes. Nature. 2019;566:224–229. doi: 10.1038/s41586-019-0917-9. PubMed DOI PMC
Hoffmann T, Gastreich M. The next level in chemical space navigation: going far beyond enumerable compound libraries. Drug Discov Today. 2019;24:1148–1156. doi: 10.1016/j.drudis.2019.02.013. PubMed DOI
Sadybekov AA, Sadybekov AV, Liu Y, Iliopoulos-Tsoutsouvas C, Huang X-P, Pickett J, Houser B, Patel N, Tran NK, Tong F, Zvonok N, Jain MK, Savych O, Radchenko DS, Nikas SP, Petasis NA, Moroz YS, Roth BL, Makriyannis A, Katritch V. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature. 2021;601:452–459. doi: 10.1038/s41586-021-04220-9. PubMed DOI PMC
Ellingson SR, Smith JC, Baudry J. VinaMPI: facilitating multiple receptor high-throughput virtual docking on high-performance computers. J Comput Chem. 2013;34:2212–2221. doi: 10.1002/jcc.23367. PubMed DOI
Guo J, Janet JP, Bauer MR, Nittinger E, Giblin KA, Papadopoulos K, Voronov A, Patronov A, Engkvist O, Margreitter C. DockStream: a docking wrapper to enhance de novo molecular design. J Chem Inf. 2021;13:89. doi: 10.1186/s13321-021-00563-7. PubMed DOI PMC
Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, Fink EA, Balius TE, Carlsson J, Irwin JJ, Shoichet BK. A practical guide to large-scale docking. Nat Protoc. 2021;16:4799–4832. doi: 10.1038/s41596-021-00597-z. PubMed DOI PMC
Barreto Gomes DE, Galentino K, Sisquellas M, Monari L, Bouysset C, Cecchini M. ChemFlowFrom 2D chemical libraries to protein–ligand binding free energies. J Chem Inf Model. 2023;63(2):407–411. doi: 10.1021/acs.jcim.2c00919. PubMed DOI PMC
García-Ortegón M, Simm GNC, Tripp AJ, Hernández-Lobato JM, Bender A, Bacallado S. DOCKSTRING: easy molecular docking yields better benchmarks for ligand design. J Chem Inf Model. 2022;62:3486–3502. doi: 10.1021/acs.jcim.1c01334. PubMed DOI PMC
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model. 2021;61(8):3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC
McNutt AT, Francoeur P, Aggarwal R, Masuda T, Meli R, Ragoza M, Sunseri J, Koes DR. GNINA 1.0: molecular docking with deep learning. J Chem Inf. 2021;13:43. doi: 10.1186/s13321-021-00522-2. PubMed DOI PMC
Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model. 2013;53:1893–1904. doi: 10.1021/ci300604z. PubMed DOI PMC
Rocklin M (2015) Dask: parallel computation with blocked algorithms and task scheduling. In Huff K, Bergstra J (eds) Proceedings of the 14th Python in science conference, pp 130–136
Böhm S, Beránek J (2020) Runtime vs scheduler: analyzing dask’s overheads. Paper presented at the 2020 IEEE/ACM workflows in support of large-scale science (WORKS)
Beránek J, Böhm S, Cima V. Analysis of workflow schedulers in simulated distributed environments. J Supercomput. 2022;78:15154–15180. doi: 10.1007/s11227-022-04438-y. DOI
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Shapovalov Maxim V, Dunbrack Roland L. A smoothed backbone-dependent Rotamer Library for proteins derived from adaptive Kernel density estimates and regressions. Structure. 2011;19:844–858. doi: 10.1016/j.str.2011.03.019. PubMed DOI PMC
Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform. 2016;54(5):6. doi: 10.1002/cpbi.3. PubMed DOI PMC
Song S, Gao P, Sun L, Kang D, Kongsted J, Poongavanam V, Zhan P, Liu X. Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharm Sin B. 2021;11:3035–3059. doi: 10.1016/j.apsb.2021.01.010. PubMed DOI PMC
Messner K, Vuong B, Tranmer GK. The boron advantage: the evolution and diversification of boron's applications in medicinal chemistry. Pharmaceuticals. 2022;15:264. doi: 10.3390/ph15030264. PubMed DOI PMC
Johnsamuel J, Byun Y, Jones TP, Endo Y, Tjarks W. A convenient method for the computer-aided molecular design of carborane containing compounds. Bioorg Med Chem Lett. 2003;13:3213–3216. doi: 10.1016/S0960-894X(03)00674-7. PubMed DOI
Minkkilä A, Saario SM, Käsnänen H, Leppänen J, Poso A, Nevalainen T. Discovery of boronic acids as novel and potent inhibitors of fatty acid amide hydrolase. J Med Chem. 2008;51:7057–7060. doi: 10.1021/jm801051t. PubMed DOI
Byun Y, Thirumamagal BTS, Yang W, Eriksson S, Barth RF, Tjarks W. Preparation and Biological evaluation of 10B-enriched 3-[5-{2-(2,3-dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH), a new boron delivery agent for Boron neutron capture therapy of brain tumors. J Med Chem. 2006;49:5513–5523. doi: 10.1021/jm060413w. PubMed DOI
Tiwari R, Mahasenan K, Pavlovicz R, Li C, Tjarks W. Carborane clusters in computational drug design: a comparative docking evaluation using AutoDock, FlexX, Glide, and Surflex. J Chem Inf Model. 2009;49:1581–1589. doi: 10.1021/ci900031y. PubMed DOI PMC
Quiroga R, Villarreal MA. Vinardo: a scoring function based on Autodock Vina improves scoring, docking, and virtual screening. PLoS ONE. 2016;11:e0155183. doi: 10.1371/journal.pone.0155183. PubMed DOI PMC
cxcalc version 22.19.0, ChemAxon. https://www.chemaxon.com
StreaMD: the toolkit for high-throughput molecular dynamics simulations