Expression analysis suggests that DNMT3L is required for oocyte de novo DNA methylation only in Muridae and Cricetidae rodents

. 2023 Nov 04 ; 16 (1) : 43. [epub] 20231104

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37924163
Odkazy

PubMed 37924163
PubMed Central PMC10625200
DOI 10.1186/s13072-023-00518-2
PII: 10.1186/s13072-023-00518-2
Knihovny.cz E-zdroje

BACKGROUND: During early mammalian development, DNA methylation undergoes two waves of reprogramming, enabling transitions between somatic cells, oocyte and embryo. The first wave of de novo DNA methylation establishment occurs in oocytes. Its molecular mechanisms have been studied in mouse, a classical mammalian model. Current model describes DNA methyltransferase 3A (DNMT3A) and its cofactor DNMT3L as two essential factors for oocyte DNA methylation-the ablation of either leads to nearly complete abrogation of DNA methylation. However, DNMT3L is not expressed in human oocytes, suggesting that the mechanism uncovered in mouse is not universal across mammals. RESULTS: We analysed available RNA-seq data sets from oocytes of multiple mammals, including our novel data sets of several rodent species, and revealed that Dnmt3l is expressed only in the oocytes of mouse, rat and golden hamster, and at a low level in guinea pigs. We identified a specific promoter sequence recognised by an oocyte transcription factor complex associated with strong Dnmt3l activity and demonstrated that it emerged in the rodent clade Eumuroida, comprising the families Muridae (mice, rats, gerbils) and Cricetidae (hamsters). In addition, an evolutionarily novel promoter emerged in the guinea pig, driving weak Dnmt3l expression, likely without functional relevance. Therefore, Dnmt3l is expressed and consequently plays a role in oocyte de novo DNA methylation only in a small number of rodent species, instead of being an essential pan-mammalian factor. In contrast to somatic cells, where catalytically inactive DNMT3B interacts with DNMT3A, forming a heterotetramer, we did not find evidence for the expression of such inactive Dnmt3b isoforms in the oocytes of the tested species. CONCLUSIONS: The analysis of RNA-seq data and genomic sequences revealed that DNMT3L is likely to play a role in oocytes de novo DNA methylation only in mice, rats, gerbils and hamsters. The mechanism governing de novo DNA methylation in the oocytes of most mammalian species, including humans, occurs through a yet unknown mechanism that differs from the current model discovered in mouse.

Zobrazit více v PubMed

Álvarez-Carretero S, Kapli P, Yang Z. Beginner's guide on the use of PAML to detect positive selection. Mol Biol Evolut. 2023;40(4):msad041. doi: 10.1093/molbev/msad041. PubMed DOI PMC

Andrews S, Krueger C, Mellado-Lopez M, Hemberger M, Dean W, Perez-Garcia V, Hanna CW. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B. Nat Commun. 2023;14(1):371. doi: 10.1038/s41467-023-36019-9. PubMed DOI PMC

Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V, Hérault Y, Guillou F, Bourc’his D. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science. 2016;354(6314):909–912. doi: 10.1126/science.aah5143. PubMed DOI

Bourc'his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004;431(7004):96–99. doi: 10.1038/nature02886. PubMed DOI

Bourc'his D, Xu G-L, Lin C-S, Bollman B, Bestor Timothy H. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–2539. doi: 10.1126/science.1065848. PubMed DOI

Brind'Amour J, Kobayashi H, Richard Albert J, Shirane K, Sakashita A, Kamio A, Bogutz A, Koike T, Karimi MM, Lefebvre L, Kono T, Lorincz MC. LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nat Commun. 2018;9(1):3331–3331. doi: 10.1038/s41467-018-05841-x. PubMed DOI PMC

Carter AM. Animal models of human pregnancy and placentation: alternatives to the mouse. Reproduction. 2020;160(6):R129–R143. doi: 10.1530/REP-20-0354. PubMed DOI

Chen Z, Zhang Y. Role of mammalian DNA methyltransferases in development. Annu Rev Biochem. 2020;89(1):135–158. doi: 10.1146/annurev-biochem-103019-102815. PubMed DOI

Chitwood JL, Burruel VR, Halstead MM, Meyers SA, Ross PJ. Transcriptome profiling of individual rhesus macaque oocytes and preimplantation embryos†. Biol Reprod. 2017;97(3):353–364. doi: 10.1093/biolre/iox114. PubMed DOI PMC

Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature. 2009;461(7262):415–418. doi: 10.1038/nature08315. PubMed DOI

Clarke HJ, Vieux K-F. Epigenetic inheritance through the female germ-line: the known, the unknown, and the possible. Semin Cell Dev Biol. 2015;43:106–116. doi: 10.1016/j.semcdb.2015.07.003. PubMed DOI

Dang Y, Zhu L, Yuan P, Liu Q, Guo Q, Chen X, Gao S, Liu X, Ji S, Yuan Y, Lian Y, Li R, Yan L, Wong CCL, Qiao J. Functional profiling of stage-specific proteome and translational transition across human pre-implantation embryo development at a single-cell resolution. Cell Discov. 2023;9(1):10. doi: 10.1038/s41421-022-00491-2. PubMed DOI PMC

Demond H, Kelsey G. The enigma of DNA methylation in the mammalian oocyte [version 1; peer review: 4 approved] F1000 Res. 2020;9:146. doi: 10.12688/f1000research.21513.1. PubMed DOI PMC

Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation*. J Biol Chem. 2010;285(34):26114–26120. doi: 10.1074/jbc.M109.089433. PubMed DOI PMC

Duymich CE, Charlet J, Yang X, Jones PA, Liang G. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun. 2016;7(1):11453. doi: 10.1038/ncomms11453. PubMed DOI PMC

Emperle M, Bangalore DM, Adam S, Kunert S, Heil HS, Heinze KG, Bashtrykov P, Tessmer I, Jeltsch A. Structural and biochemical insight into the mechanism of dual CpG site binding and methylation by the DNMT3A DNA methyltransferase. Nucleic Acids Res. 2021;49(14):8294–8308. doi: 10.1093/nar/gkab600. PubMed DOI PMC

Franke V, Ganesh S, Karlic R, Malik R, Pasulka J, Horvat F, Kuzman M, Fulka H, Cernohorska M, Urbanova J, Svobodova E, Ma J, Suzuki Y, Aoki F, Schultz RM, Vlahovicek K, Svoboda P. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 2017 doi: 10.1101/gr.216150.116. PubMed DOI PMC

Gahurova L, Tomizawa S-I, Smallwood SA, Stewart-Morgan KR, Saadeh H, Kim J, Andrews SR, Chen T, Kelsey G. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenet Chromatin. 2017;10:25–25. doi: 10.1186/s13072-017-0133-5. PubMed DOI PMC

Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update. 2018;24(5):556–576. doi: 10.1093/humupd/dmy021. PubMed DOI PMC

Hanna CW, Huang J, Belton C, Reinhardt S, Dahl A, Andrews S, Stewart AF, Kranz A, Kelsey G. Loss of histone methyltransferase SETD1B in oogenesis results in the redistribution of genomic histone 3 lysine 4 trimethylation. Nucleic Acids Res. 2022;50(4):1993–2004. doi: 10.1093/nar/gkac051. PubMed DOI PMC

Hanna CW, Taudt A, Huang J, Gahurova L, Kranz A, Andrews S, Dean W, Stewart AF, Colomé-Tatché M, Kelsey G. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. Nat Struct Mol Biol. 2018;25(1):73–82. doi: 10.1038/s41594-017-0013-5. PubMed DOI

Inoue A. Noncanonical imprinting: intergenerational epigenetic inheritance mediated by Polycomb complexes. Curr Opin Genet Dev. 2023;78:102015. doi: 10.1016/j.gde.2022.102015. PubMed DOI

Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 2007;449(7159):248–251. doi: 10.1038/nature06146. PubMed DOI PMC

Jin Y, Tam OH, Paniagua E, Hammell M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics. 2015;31(22):3593–3599. doi: 10.1093/bioinformatics/btv422. PubMed DOI PMC

Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429(6994):900–903. doi: 10.1038/nature02633. PubMed DOI

Kibe K, Shirane K, Ohishi H, Uemura S, Toh H, Sasaki H. The DNMT3A PWWP domain is essential for the normal DNA methylation landscape in mouse somatic cells and oocytes. PLoS Genet. 2021;17(5):e1009570. doi: 10.1371/journal.pgen.1009570. PubMed DOI PMC

Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, Suzuki Y, Kono T. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 2012;8(1):e1002440. doi: 10.1371/journal.pgen.1002440. PubMed DOI PMC

Li J-Y, Pu M-T, Hirasawa R, Li B-Z, Huang Y-N, Zeng R, Jing N-H, Chen T, Li E, Sasaki H, Xu G-L. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol. 2007;27(24):8748–8759. doi: 10.1128/MCB.01380-07. PubMed DOI PMC

Lu X, Zhang Y, Wang L, Wang L, Wang H, Xu Q, Xiang Y, Chen C, Kong F, Xia W, Lin Z, Ma S, Liu L, Wang X, Ni H, Li W, Guo Y, Xie W. Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting. Sci Adv. 2021;7(48):eabi6178. doi: 10.1126/sciadv.abi6178. PubMed DOI PMC

Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022 doi: 10.1093/nar/gkac240. PubMed DOI PMC

Memili E, Peddinti D, Shack LA, Nanduri B, McCarthy F, Sagirkaya H, Burgess SC. Bovine germinal vesicle oocyte and cumulus cell proteomics. Reproduction. 2007;133(6):1107–1120. doi: 10.1530/REP-06-0149. PubMed DOI

Ooi SKT, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin S-P, Allis CD, Cheng X, Bestor TH. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 2007;448(7154):714–717. doi: 10.1038/nature05987. PubMed DOI PMC

Osmanski AB, Paulat NS, Korstian J, Grimshaw JR, Halsey M, Sullivan KAM, Moreno-Santillán DD, Crookshanks C, Roberts J, Garcia C, Johnson MG, Densmore LD, Stevens RD, Zoonomia C, Rosen J, Storer JM, Hubley R, Smit AFA, Dávalos LM, Karlsson EK, Lindblad-Toh K, Ray DA, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli K-P, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot J-E, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science. 2023;380(6643):1430. doi: 10.1126/science.abn1430. PubMed DOI PMC

Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain. EMBO Rep. 2009;10(11):1235–1241. doi: 10.1038/embor.2009.218. PubMed DOI PMC

Perlman RL. Mouse models of human disease: an evolutionary perspective. Evolut Med Public Health. 2016;2016(1):170–176. doi: 10.1093/emph/eow014. PubMed DOI PMC

Petrussa L, Van de Velde H, De Rycke M. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies. Mol Hum Reprod. 2014;20(9):861–874. doi: 10.1093/molehr/gau049. PubMed DOI

Ramani R, Krumholz K, Huang Y-F, Siepel A. PhastWeb: a web interface for evolutionary conservation scoring of multiple sequence alignments using phastCons and phyloP. Bioinformatics. 2019;35(13):2320–2322. doi: 10.1093/bioinformatics/bty966. PubMed DOI PMC

Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol Biol Evol. 2018;35(10):2582–2584. doi: 10.1093/molbev/msy159. PubMed DOI PMC

Ranwez V, Harispe S, Delsuc F, Douzery EJP. MACSE: multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS ONE. 2011;6(9):e22594. doi: 10.1371/journal.pone.0022594. PubMed DOI PMC

Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol Evolut. 2012;3(2):217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI

Reyes JM, Chitwood JL, Ross PJ. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation. Mol Reprod Dev. 2015;82(2):103–114. doi: 10.1002/mrd.22445. PubMed DOI PMC

Sendžikaitė G, Kelsey G. The role and mechanisms of DNA methylation in the oocyte. Essays Biochem. 2019;63(6):691–705. doi: 10.1042/EBC20190043. PubMed DOI PMC

Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, López CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG, Null N, Abouhamze A, Balis UGJ, Camp DG, De AK, Harbrecht BG, Hayden DL, Kaushal A, O’Keefe GE, Kotz KT, Qian W, Schoenfeld DA, Shapiro MB, Silver GM, Smith RD, Storey JD, Tibshirani R, Toner M, Wilhelmy J, Wispelwey B, Wong WH. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci. 2013;110(9):3507–3512. doi: 10.1073/pnas.1222878110. PubMed DOI PMC

Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, Kono T, Sasaki H. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of Non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 2013;9(4):e1003439. doi: 10.1371/journal.pgen.1003439. PubMed DOI PMC

Shovlin TC, Bourchis D, La Salle S, O’Doherty A, Trasler JM, Bestor TH, Walsh CP. Sex-specific promoters regulate Dnmt3L expression in mouse germ cells. Hum Reprod. 2007;22(2):457–467. doi: 10.1093/humrep/del379. PubMed DOI

Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet. 2012;28(1):33–42. doi: 10.1016/j.tig.2011.09.004. PubMed DOI

Smallwood SA, Tomizawa S-I, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 2011;43(8):811–814. doi: 10.1038/ng.864. PubMed DOI PMC

Stewart KR, Veselovska L, Kelsey G. Establishment and functions of DNA methylation in the germline. Epigenomics. 2016;8(10):1399–1413. doi: 10.2217/epi-2016-0056. PubMed DOI PMC

Stewart KR, Veselovska L, Kim J, Huang J, Saadeh H, Tomizawa S-I, Smallwood SA, Chen T, Kelsey G. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev. 2015;29(23):2449–2462. doi: 10.1101/gad.271353.115. PubMed DOI PMC

Swanson MT, Oliveros CH, Esselstyn JA. A phylogenomic rodent tree reveals the repeated evolution of masseter architectures. Proc Royal Soc B Biol Sci. 2019;286(1902):20190672. doi: 10.1098/rspb.2019.0672. PubMed DOI PMC

Swearengen JR. Choosing the right animal model for infectious disease research. Animal Models Exp Med. 2018;1(2):100–108. doi: 10.1002/ame2.12020. PubMed DOI PMC

Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, Nueda MJ, Ferrer A, Conesa A. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43(21):e140–e140. doi: 10.1093/nar/gkv711. PubMed DOI PMC

Tsai T-S, Tyagi S, St. John JC. The molecular characterisation of mitochondrial DNA deficient oocytes using a pig model. Hum Reprod. 2018;33(5):942–953. doi: 10.1093/humrep/dey052. PubMed DOI

Uehara R, Au Yeung WK, Toriyama K, Ohishi H, Kubo N, Toh H, Suetake I, Shirane K, Sasaki H. The DNMT3A ADD domain is required for efficient de novo DNA methylation and maternal imprinting in mouse oocytes. PLoS Genet. 2023;19(8):e1010855. doi: 10.1371/journal.pgen.1010855. PubMed DOI PMC

Upham NS, Esselstyn JA, Jetz W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 2019;17(12):e3000494. doi: 10.1371/journal.pbio.3000494. PubMed DOI PMC

van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245. doi: 10.1371/journal.pmed.1000245. PubMed DOI PMC

Vandamme T. Use of rodents as models of human diseases [Review Article] J Pharm Bioallied Sci. 2014;6(1):2–9. doi: 10.4103/0975-7406.124301. PubMed DOI PMC

Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F, Maupetit-Méhouas S, Arnaud P, Tomizawa S-I, Andrews S, Kelsey G. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol. 2015;16:209–209. doi: 10.1186/s13059-015-0769-z. PubMed DOI PMC

Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S. Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci. 2010;107(41):17639–17644. doi: 10.1073/pnas.1013185107. PubMed DOI PMC

Wang X, Liu D, He D, Suo S, Xia X, He X, Han J-DJ, Zheng P. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos. Genome Res. 2017;27(4):567–579. doi: 10.1101/gr.198044.115. PubMed DOI PMC

Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.

Wu J, Xu J, Liu B, Yao G, Wang P, Lin Z, Huang B, Wang X, Li T, Shi S, Zhang N, Duan F, Ming J, Zhang X, Niu W, Song W, Jin H, Guo Y, Dai S, Hu L, Fang L, Wang Q, Li Y, Li W, Na J, Xie W, Sun Y. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature. 2018;557(7704):256–260. doi: 10.1038/s41586-018-0080-8. PubMed DOI

Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20(9):1131–1139. doi: 10.1038/nsmb.2660. PubMed DOI

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI

Yano S, Ishiuchi T, Abe S, Namekawa SH, Huang G, Ogawa Y, Sasaki H. Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes. Nat Commun. 2022;13(1):4440. doi: 10.1038/s41467-022-32141-2. PubMed DOI PMC

Yu C, Cvetesic N, Hisler V, Gupta K, Ye T, Gazdag E, Negroni L, Hajkova P, Berger I, Lenhard B, Müller F, Vincent SD, Tora L. TBPL2/TFIIA complex establishes the maternal transcriptome through oocyte-specific promoter usage. Nat Commun. 2020;11(1):6439. doi: 10.1038/s41467-020-20239-4. PubMed DOI PMC

Zeng Y, Ren R, Kaur G, Hardikar S, Ying Z, Babcock L, Gupta E, Zhang X, Chen T, Cheng X. The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes Dev. 2020;34(21–22):1546–1558. doi: 10.1101/gad.341925.120. PubMed DOI PMC

Zhang Y, Jurkowska R, Soeroes S, Rajavelu A, Dhayalan A, Bock I, Rathert P, Brandt O, Reinhardt R, Fischle W, Jeltsch A. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 2010;38(13):4246–4253. doi: 10.1093/nar/gkq147. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...