Gaze coherence reveals distinct tracking strategies in multiple object and multiple identity tracking
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
19-07690S
Grantová Agentura České Republiky
PubMed
37940799
DOI
10.3758/s13423-023-02417-9
PII: 10.3758/s13423-023-02417-9
Knihovny.cz E-zdroje
- Klíčová slova
- Attention, Eye movements, Multiple identitty, Multiple object tracking, Tracking,
- MeSH
- korelace dat MeSH
- lidé MeSH
- mladý dospělý MeSH
- modely neurologické * MeSH
- oční fixace * fyziologie MeSH
- pohyb těles MeSH
- pravděpodobnost MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání obrazu * fyziologie MeSH
- světelná stimulace MeSH
- vnímání pohybu * fyziologie MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
In dynamic environments, a central task of the attentional system is to keep track of objects changing their spatial location over time. In some instances, it is sufficient to track only the spatial locations of moving objects (i.e., multiple object tracking; MOT). In other instances, however, it is also important to maintain distinct identities of moving objects (i.e., multiple identity tracking; MIT). Despite previous research, it is not clear whether MOT and MIT performance emerge from the same tracking mechanism. In the present report, we study gaze coherence (i.e., the extent to which participants repeat their gaze behaviour when tracking the same object locations twice) across repeated MOT and MIT trials. We observed more substantial gaze coherence in repeated MOT trials compared to the repeated MIT trials or mixed MOT-MIT trial pairs. A subsequent simulation study suggests that MOT is based more on a grouping mechanism than MIT, whereas MIT is based more on a target-jumping mechanism than MOT. It thus appears unlikely that MOT and MIT emerge from the same basic tracking mechanism.
Zobrazit více v PubMed
Bae, G. Y., & Flombaum, J. I. (2012). Close encounters of the distracting kind: identifying the cause of visual tracking errors. Attention, Perception, & Psychophysics, 74(4), 703–715. https://doi.org/10.3758/s13414-011-0260-1 DOI
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357 PubMed DOI
Bürkner, P.-C. (2017). brms: An R package for bayesian multilevel models using stan. Journal of Statistical Software, 80, 1–28. https://doi.org/10.18637/jss.v080.i01 DOI
Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9(7), 349–354. https://doi.org/10.1016/j.tics.2005.05.009 PubMed DOI
Cohen, M. A., Pinto, Y., Howe, P. D. L., & Horowitz, T. S. (2011). The what–where trade-off in multiple-identity tracking. Attention, Perception, & Psychophysics, 73(5), 1422–1434. https://doi.org/10.3758/s13414-011-0089-7 DOI
Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The eyelink toolbox: Eye tracking with MATLAB and the psychophysics toolbox. Behavior Research Methods, Instruments, & Computers, 34(4), 613–617. https://doi.org/10.3758/BF03195489 DOI
Děchtěrenko, F., Lukavský, J., & Holmqvist, K. (2017). Flipping the stimulus: Effects on scanpath coherence? Behavior Research Methods, 49(1), 382–393. https://doi.org/10.3758/s13428-016-0708-2 PubMed DOI
Doran, M. M., & Hoffman, J. E. (2010). The role of visual attention in multiple object tracking: Evidence from ERPs. Attention, Perception, & Psychophysics, 72(1), 33–52. https://doi.org/10.3758/APP.72.1.33 DOI
Drew, T., Horowitz, T. S., & Vogel, E. K. (2013). Swapping or dropping? Electrophysiological measures of difficulty during multiple object tracking. Cognition, 126(2), 213–223. https://doi.org/10.1016/j.cognition.2012.10.003 PubMed DOI
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149 PubMed DOI
Fehd, H. M., & Seiffert, A. E. (2008). Eye movements during multiple object tracking: Where do participants look? Cognition, 108(1), 201–209. https://doi.org/10.1016/j.cognition.2007.11.008 PubMed DOI
Fehd, H. M., & Seiffert, A. E. (2010). Looking at the center of the targets helps multiple object tracking. Journal of Vision, 10(4), 19. https://doi.org/10.1167/10.4.19 DOI
Hamm, L. M., Yeoman, J. P., Anstice, N., & Dakin, S. C. (2018). The Auckland optotypes: An open-access pictogram set for measuring recognition acuity. Journal of Vision, 18(3), 13. https://doi.org/10.1167/18.3.13 PubMed DOI
Horowitz, T. S., Klieger, S. B., Fencsik, D. E., Yang, K. K., Alvarez, G. A., & Wolfe, J. M. (2007). Tracking unique objects. Perception & Psychophysics, 69(2), 172–184. https://doi.org/10.3758/BF03193740 DOI
Huff, M., Papenmeier, F., Jahn, G., & Hesse, F. W. (2010). Eye movements across viewpoint changes in multiple object tracking. Visual Cognition, 18(9), 1368–1391. https://doi.org/10.1080/13506285.2010.495878
Hyönä, J., Li, J., & Oksama, L. (2019). Eye behavior during multiple object tracking and multiple identity tracking. Vision, 3(3), 3. https://doi.org/10.3390/vision3030037 DOI
Lukavský, J. (2013). Eye movements in repeated multiple object tracking. Journal of Vision, 13(7), 9–9. https://doi.org/10.1167/13.7.9 PubMed DOI
Lukavský, J., & Děchtěrenko, F. (2016). Gaze position lagging behind scene content in multiple object tracking: Evidence from forward and backward presentations. Attention, Perception, & Psychophysics, 78(8), 2456–2468. https://doi.org/10.3758/s13414-016-1178-4 DOI
Lukavsky, J. (2023). motrack—Tools for multiple object tracking experiments (0.3.0) [R package]. GitHub. https://github.com/visionlabels/motrack
Merkel, C., Stoppel, C. M., Hillyard, S. A., Heinze, H.-J., Hopf, J.-M., & Schoenfeld, M. A. (2014). Spatio-temporal patterns of brain activity distinguish strategies of multiple-object tracking. Journal of Cognitive Neuroscience, 26(1), 28–40. https://doi.org/10.1162/jocn_a_00455 PubMed DOI
Merkel, C., Hopf, J.-M., Heinze, H.-J., & Schoenfeld, M. A. (2015). Neural correlates of multiple object tracking strategies. NeuroImage, 118, 63–73. https://doi.org/10.1016/j.neuroimage.2015.06.005 PubMed DOI
Meyerhoff, H. S., Papenmeier, F., Jahn, G., & Huff, M. (2015). Distractor locations influence multiple object tracking beyond interobject spacing. Experimental Psychology, 62(3), 170–180. https://doi.org/10.1027/1618-3169/a000283 PubMed DOI
Meyerhoff, H. S., Papenmeier, F., & Huff, M. (2017). Studying visual attention using the multiple object tracking paradigm: A tutorial review. Attention, Perception, & Psychophysics, 79(5), 1255–1274. https://doi.org/10.3758/s13414-017-1338-1 DOI
Meyerhoff, H. S., Jardine, N., Stieff, M., Hegarty, M., & Franconeri, S. (2021). Visual ZIP files: Viewers beat capacity limits by compressing redundant features across objects. Journal of Experimental Psychology: Human Perception and Performance, 47(1), 103–115. https://doi.org/10.1037/xhp0000879 PubMed DOI
Oksama, L., & Hyönä, J. (2008). Dynamic binding of identity and location information: A serial model of multiple identity tracking. Cognitive Psychology, 56(4), 237–283. https://doi.org/10.1016/j.cogpsych.2007.03.001 PubMed DOI
Oksama, L., & Hyönä, J. (2016). Position tracking and identity tracking are separate systems: evidence from eye movements. Cognition, 146, 393–409. https://doi.org/10.1016/j.cognition.2015.10.016 PubMed DOI
Pinto, Y., Scholte, H. S., & Lamme, V. A. F. (2012). Tracking moving identities: after attending the right location, the identity does not come for free. PLOS ONE, 7(8), e42929. https://doi.org/10.1371/journal.pone.0042929 PubMed DOI PMC
Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spat. Vis., 3(3), 179–197. PubMed DOI
Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object? evidence from target merging in multiple object tracking. Cognition, 80(1), 159–177. https://doi.org/10.1016/S0010-0277(00)00157-8 PubMed DOI
Yantis, S. (1992). Multielement visual tracking: attention and perceptual organization. Cognitive Psychology, 24(3), 295–340. https://doi.org/10.1016/0010-0285(92)90010-Y PubMed DOI
Yu, D., Xiao, X., Bemis, D. K., & Franconeri, S. L. (2019). Similarity grouping as feature-based selection. Psychological Science, 30(3), 376–385. https://doi.org/10.1177/0956797618822798 PubMed DOI
Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., Stauffer, R., & Wilke, C. O. (2020). colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes. Journal of Statistical Software, 96, 1–49. https://doi.org/10.18637/jss.v096.i01 DOI
Zelinsky, G. J., & Neider, M. B. (2008). An eye movement analysis of multiple object tracking in a realistic environment. Visual Cognition, 16(5), 553–566. https://doi.org/10.1080/13506280802000752 DOI
Zelinsky, G. J., & Todor, A. (2010). The role of “rescue saccades” in tracking objects through occlusions. Journal of Vision, 10(14), 29. https://doi.org/10.1167/10.14.29 PubMed DOI
Zhong, S. H., Ma, Z., Wilson, C., Liu, Y., & Flombaum, J. I. (2014). Why do people appear not to extrapolate trajectories during multiple object tracking? A computational investigation. Journal of Vision, 14(12), 12–12. PubMed