Gaze coherence reveals distinct tracking strategies in multiple object and multiple identity tracking

. 2024 Jun ; 31 (3) : 1280-1289. [epub] 20231108

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37940799

Grantová podpora
19-07690S Grantová Agentura České Republiky

Odkazy

PubMed 37940799
DOI 10.3758/s13423-023-02417-9
PII: 10.3758/s13423-023-02417-9
Knihovny.cz E-zdroje

In dynamic environments, a central task of the attentional system is to keep track of objects changing their spatial location over time. In some instances, it is sufficient to track only the spatial locations of moving objects (i.e., multiple object tracking; MOT). In other instances, however, it is also important to maintain distinct identities of moving objects (i.e., multiple identity tracking; MIT). Despite previous research, it is not clear whether MOT and MIT performance emerge from the same tracking mechanism. In the present report, we study gaze coherence (i.e., the extent to which participants repeat their gaze behaviour when tracking the same object locations twice) across repeated MOT and MIT trials. We observed more substantial gaze coherence in repeated MOT trials compared to the repeated MIT trials or mixed MOT-MIT trial pairs. A subsequent simulation study suggests that MOT is based more on a grouping mechanism than MIT, whereas MIT is based more on a target-jumping mechanism than MOT. It thus appears unlikely that MOT and MIT emerge from the same basic tracking mechanism.

Zobrazit více v PubMed

Bae, G. Y., & Flombaum, J. I. (2012). Close encounters of the distracting kind: identifying the cause of visual tracking errors. Attention, Perception, & Psychophysics, 74(4), 703–715. https://doi.org/10.3758/s13414-011-0260-1 DOI

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357 PubMed DOI

Bürkner, P.-C. (2017). brms: An R package for bayesian multilevel models using stan. Journal of Statistical Software, 80, 1–28. https://doi.org/10.18637/jss.v080.i01 DOI

Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9(7), 349–354. https://doi.org/10.1016/j.tics.2005.05.009 PubMed DOI

Cohen, M. A., Pinto, Y., Howe, P. D. L., & Horowitz, T. S. (2011). The what–where trade-off in multiple-identity tracking. Attention, Perception, & Psychophysics, 73(5), 1422–1434. https://doi.org/10.3758/s13414-011-0089-7 DOI

Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The eyelink toolbox: Eye tracking with MATLAB and the psychophysics toolbox. Behavior Research Methods, Instruments, & Computers, 34(4), 613–617. https://doi.org/10.3758/BF03195489 DOI

Děchtěrenko, F., Lukavský, J., & Holmqvist, K. (2017). Flipping the stimulus: Effects on scanpath coherence? Behavior Research Methods, 49(1), 382–393. https://doi.org/10.3758/s13428-016-0708-2 PubMed DOI

Doran, M. M., & Hoffman, J. E. (2010). The role of visual attention in multiple object tracking: Evidence from ERPs. Attention, Perception, & Psychophysics, 72(1), 33–52. https://doi.org/10.3758/APP.72.1.33 DOI

Drew, T., Horowitz, T. S., & Vogel, E. K. (2013). Swapping or dropping? Electrophysiological measures of difficulty during multiple object tracking. Cognition, 126(2), 213–223. https://doi.org/10.1016/j.cognition.2012.10.003 PubMed DOI

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149 PubMed DOI

Fehd, H. M., & Seiffert, A. E. (2008). Eye movements during multiple object tracking: Where do participants look? Cognition, 108(1), 201–209. https://doi.org/10.1016/j.cognition.2007.11.008 PubMed DOI

Fehd, H. M., & Seiffert, A. E. (2010). Looking at the center of the targets helps multiple object tracking. Journal of Vision, 10(4), 19. https://doi.org/10.1167/10.4.19 DOI

Hamm, L. M., Yeoman, J. P., Anstice, N., & Dakin, S. C. (2018). The Auckland optotypes: An open-access pictogram set for measuring recognition acuity. Journal of Vision, 18(3), 13. https://doi.org/10.1167/18.3.13 PubMed DOI

Horowitz, T. S., Klieger, S. B., Fencsik, D. E., Yang, K. K., Alvarez, G. A., & Wolfe, J. M. (2007). Tracking unique objects. Perception & Psychophysics, 69(2), 172–184. https://doi.org/10.3758/BF03193740 DOI

Huff, M., Papenmeier, F., Jahn, G., & Hesse, F. W. (2010). Eye movements across viewpoint changes in multiple object tracking. Visual Cognition, 18(9), 1368–1391. https://doi.org/10.1080/13506285.2010.495878

Hyönä, J., Li, J., & Oksama, L. (2019). Eye behavior during multiple object tracking and multiple identity tracking. Vision, 3(3), 3. https://doi.org/10.3390/vision3030037 DOI

Lukavský, J. (2013). Eye movements in repeated multiple object tracking. Journal of Vision, 13(7), 9–9. https://doi.org/10.1167/13.7.9 PubMed DOI

Lukavský, J., & Děchtěrenko, F. (2016). Gaze position lagging behind scene content in multiple object tracking: Evidence from forward and backward presentations. Attention, Perception, & Psychophysics, 78(8), 2456–2468. https://doi.org/10.3758/s13414-016-1178-4 DOI

Lukavsky, J. (2023). motrack—Tools for multiple object tracking experiments (0.3.0) [R package]. GitHub. https://github.com/visionlabels/motrack

Merkel, C., Stoppel, C. M., Hillyard, S. A., Heinze, H.-J., Hopf, J.-M., & Schoenfeld, M. A. (2014). Spatio-temporal patterns of brain activity distinguish strategies of multiple-object tracking. Journal of Cognitive Neuroscience, 26(1), 28–40. https://doi.org/10.1162/jocn_a_00455 PubMed DOI

Merkel, C., Hopf, J.-M., Heinze, H.-J., & Schoenfeld, M. A. (2015). Neural correlates of multiple object tracking strategies. NeuroImage, 118, 63–73. https://doi.org/10.1016/j.neuroimage.2015.06.005 PubMed DOI

Meyerhoff, H. S., Papenmeier, F., Jahn, G., & Huff, M. (2015). Distractor locations influence multiple object tracking beyond interobject spacing. Experimental Psychology, 62(3), 170–180. https://doi.org/10.1027/1618-3169/a000283 PubMed DOI

Meyerhoff, H. S., Papenmeier, F., & Huff, M. (2017). Studying visual attention using the multiple object tracking paradigm: A tutorial review. Attention, Perception, & Psychophysics, 79(5), 1255–1274. https://doi.org/10.3758/s13414-017-1338-1 DOI

Meyerhoff, H. S., Jardine, N., Stieff, M., Hegarty, M., & Franconeri, S. (2021). Visual ZIP files: Viewers beat capacity limits by compressing redundant features across objects. Journal of Experimental Psychology: Human Perception and Performance, 47(1), 103–115. https://doi.org/10.1037/xhp0000879 PubMed DOI

Oksama, L., & Hyönä, J. (2008). Dynamic binding of identity and location information: A serial model of multiple identity tracking. Cognitive Psychology, 56(4), 237–283. https://doi.org/10.1016/j.cogpsych.2007.03.001 PubMed DOI

Oksama, L., & Hyönä, J. (2016). Position tracking and identity tracking are separate systems: evidence from eye movements. Cognition, 146, 393–409. https://doi.org/10.1016/j.cognition.2015.10.016 PubMed DOI

Pinto, Y., Scholte, H. S., & Lamme, V. A. F. (2012). Tracking moving identities: after attending the right location, the identity does not come for free. PLOS ONE, 7(8), e42929. https://doi.org/10.1371/journal.pone.0042929 PubMed DOI PMC

Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spat. Vis., 3(3), 179–197. PubMed DOI

Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object? evidence from target merging in multiple object tracking. Cognition, 80(1), 159–177. https://doi.org/10.1016/S0010-0277(00)00157-8 PubMed DOI

Yantis, S. (1992). Multielement visual tracking: attention and perceptual organization. Cognitive Psychology, 24(3), 295–340. https://doi.org/10.1016/0010-0285(92)90010-Y PubMed DOI

Yu, D., Xiao, X., Bemis, D. K., & Franconeri, S. L. (2019). Similarity grouping as feature-based selection. Psychological Science, 30(3), 376–385. https://doi.org/10.1177/0956797618822798 PubMed DOI

Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., Stauffer, R., & Wilke, C. O. (2020). colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes. Journal of Statistical Software, 96, 1–49. https://doi.org/10.18637/jss.v096.i01 DOI

Zelinsky, G. J., & Neider, M. B. (2008). An eye movement analysis of multiple object tracking in a realistic environment. Visual Cognition, 16(5), 553–566. https://doi.org/10.1080/13506280802000752 DOI

Zelinsky, G. J., & Todor, A. (2010). The role of “rescue saccades” in tracking objects through occlusions. Journal of Vision, 10(14), 29. https://doi.org/10.1167/10.14.29 PubMed DOI

Zhong, S. H., Ma, Z., Wilson, C., Liu, Y., & Flombaum, J. I. (2014). Why do people appear not to extrapolate trajectories during multiple object tracking? A computational investigation. Journal of Vision, 14(12), 12–12. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...