• This record comes from PubMed

The effects of formation and functionalization of graphene-based membranes on their gas and water vapor permeation properties

. 2023 Nov ; 9 (11) : e21417. [epub] 20231021

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Links

PubMed 37942160
PubMed Central PMC10628697
DOI 10.1016/j.heliyon.2023.e21417
PII: S2405-8440(23)08625-5
Knihovny.cz E-resources

The gas and water vapor permeabilities of graphene-based membranes can be affected by the presence of different functional groups directly bound to the graphene network. In this work, one type of carboxylated graphene oxide (GO-COOH) and two types of graphene oxide synthesized i) under strong oxidative conditions directly from graphite (GO-1) and ii) under mild oxidative conditions from exfoliated graphene (GO-2) were used as precursors of self-standing membranes prepared with thicknesses in the range of 12-55 μm via slow-vacuum filtration preparation method. It was observed that the permeabilities for all tested gases decreased in order GO-2 > GO-1 > GO-COOH and depended on both the arrangement of graphene sheets and their functionalization. The GO-1 membrane with a high content of oxygen-containing groups showed the best performance for water vapor permeability. The GO-2 membrane with a thickness of 43 μm exhibited a disordered GO sheet morphology and, therefore, unique gas-separation performance towards H2/CO2 gas pair, showing high hydrogen permeability while keeping extremely high H2/CO2 ideal selectivity that exceeds the Robeson 2008 upper bound of polymer membranes.

See more in PubMed

Wang Z., Ma C., Xu C., Sinquefield S., Shofner M., Nair S. Graphene oxide nanofiltration membranes for desalination under realistic conditions. Nat. Sustain. 2021;4(5):402–408.

Kumari P., Tripathi K., Jangir L., Gupta R., Awasthi K. Recent advances in the application of the graphene-based membrane for water purification. Mater. Today Chem. 2021;22

Glenn Lipscomb G., Giraud R. Sustainable Separations, Enc. Sustainable Techn. 2017;3:553–563.

Bastani D., Esmaeili N., Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review. J. Ind. Eng. Chem. 2013;19(2):375–393.

Xu Q., Xu H., Chen J., Lv Y., Dong C. Graphene and graphene oxide: advanced membranes for gas separation and water purification. Inorg. Chem. Front. 2015;2:417–424.

Morelos-Gomez A., Cruz-Silva R., Muramatsu H., Ortiz-Medina J., Araki T., Fukuyo T., Tejima S., Takeuchi K., Hayashi T., Terrones M., Endo M. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 2017;12(11):1083–1088. PubMed

Rashidi F., Kevlich N., Sinquefield S., Shofner M.L., Nair S. Graphene oxide membranes in extreme operating environments: concentration of kraft black liquor by lignin retention. ACS Sustain. Chem. Eng. 2017;5:1002–1009.

Wang Z., Ma C., Sinquefield S.A., Shofner M.L., Nair S. High-performance graphene oxide nanofiltration membranes for black liquor concentration. ACS Sustain. Chem. Eng. 2019;7:14915–14923.

Yang Q., Su Y., Chi C., Cherian C.T., Huang K., Kravets V.G., Wang F.C., Zhang J.C., Pratt A., Grigorenko A.N., Guinea F., Geim A.K., Nair R.R. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 2017;16:1198–1202. PubMed

Joshi R.K., Carbone P., Wang F.C., Kravets V.G., Su Y., Grigorieva I.V., Wu H.A., Geim A.K., Nair R.R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science. 2014;343(6172):752–754. PubMed

Abraham J., Vasu K.S., Williams C.D., Gopinadhan K., Su Y., Cherian C.T., Dix J., Prestat E., Haigh S.J., Grigorieva I.V., Carbone P., Geim A.K., Nair R.R. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017;12(6):546–550. PubMed

Chen L., Shi G., Shen J., Peng B., Zhang B., Wang Y., Bian F., Wang J., Li D., Qian Z., Xu G., Liu G., Zeng J., Zhang L., Yang Y., et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature. 2017;550:380–383. PubMed

Akbari A., Sheath P., Martin S.T., Shinde D.B., Shaibani M., Banerjee P.C., Tkacz R., Bhattacharyya D., Majumder M. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 2016;7 PubMed PMC

Gkika D.A., Karmali V., Lambropoulou D.A., Mitropoulos A.C., Kyzas G.Z. Membranes coated with graphene-based materials: a review. Membranes. 2023;13(2):1–24. 127. PubMed PMC

Ahmad M.S., Inomata Y., Kida T. Energy application of graphene based membrane: hydrogen separation. Chem. Rec. 2023 PubMed

Ang E.Y.M., Toh W., Yeo J., Lin R., Liu Z., Geethalakshmi K.R., Ng T.Y. A review on low dimensional carbon desalination and gas separation membrane designs. J. Membr. Sci. 2020;598

Liu P., Hou J., Zhang Y., Li L., Lu X., Tang Z. Two-dimensional material membranes for critical separations. Inorg. Chem. Front. 2020;7:2560–2581.

Romanos G., Pastrana-Martínez L.M., Tsoufis T., Athanasekou C., Galata E., Katsaros F., Favvas E., Beltsios K.G., Siranidi E., Falaras P., Psycharis V., Silva A.M.T. J. Membr. Sci. 2015;493:734–747.

Achari A., Eswaramoorthy M. Casting molecular channels through domain formation: high performance graphene oxide membranes for H2/CO2 separation. J. Mater. Chem. A. 2016;4:7560–7564.

Chi C., Wang X., Peng Y., Qian Y., Hu Z., Dong J., Zhao D. Facile preparation of graphene oxide membranes for gas separation. Chem. Mater. 2016;28(9):2921–2927.

Bouša D., Friess K., Pilňáček K., Vopička O., Lanč M., Fónod K., Pumera M., Sedmidubský D., Luxa J., Sofer Z. Thin, high-flux, self-standing, graphene oxide membranes for efficient hydrogen separation from gas mixtures. Chem. Eur J. 2017;23:11416–11422. PubMed

Shen J., Liu G., Huang K., Chu Z., Jin W., Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano. 2016;10(3):3398–3409. PubMed

Malekian F., Ghafourian H., Zare K., Sharif A.A., Zamani Y. Recent progress in gas separation using functionalized graphene nanopores and nanoporous graphene oxide membranes. Eur. Phys. J. Plus. 2019;134(212):1–12.

Wei Y., Pastuovic Z., Murphy T., Gore D.B. Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation Appl. Surf. Sci. 2020;505

Huang L., Jia W., Lin H. Etching and acidifying graphene oxide membranes to increase gas permeance while retaining molecular sieving ability. AIChE J. 2020;66(e17022):1–10.

Sharif S., Ahmad K.S., Rehman F., Bhatti Z., Thebo K.H. Two-dimensional graphene oxide based membranes for ionic and molecular separation: current status and challenges. J. Environ. Chem. Eng. 2021;9

Chuah C.Y., Nie L., Leeb J.-M., Bae T.-H. The influence of cations intercalated in graphene oxide membranes in tuning H2/CO2 separation performance. Sep. Purif. Technol. 2020;246

Wu T., Xue Q., Ling C., Shan M., Liu Z., Tao Y., Li X. Fluorine-modified porous graphene as membrane for CO2/N2 separation: molecular dynamic and first-principles simulations. J. Phys. Chem. C. 2014;118:7369–7376.

Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806–4814. PubMed

Štengl V. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chem. Eur J. 2012;18:14047–14054. PubMed

Štengl V., Henych J., Vomáčka P., Slušná M. Doping of TiO2–GO and TiO2–rGO with noble metals: synthesis, characterization and photocatalytic performance for azo dye discoloration. Photochem. Photobiol. 2013;89:1038–1046. PubMed

Štengl V., Bakardjieva S., Bakardjiev M., Štíbr B., Kormunda M. Carborane functionalized graphene oxide, a precursor for conductive self-assembled monolayers. Carbon. 2014;67:336–343.

Ederer J., Janoš P., Ecorchard P., Štengl V., Bělčická Z., Šťastný M., Pop-Georgievski O., Dohnal V. Quantitative determination of acidic groups in functionalized graphene by direct titration. React. Funct. Polymers. 2016;103:44–53.

Rutherford S.W., Do D.D. Review of time lag permeation technique as a method for characterisation of porous media and membranes. Adsorption. 1997;3:283–312.

White R.L., White C.M., Turgut H., Massoud A., Tian Z.R. Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. J. Taiwan Inst. Chem. Eng. 2018;85:18–28.

Xing R., Li Y., Yu H. Preparation of fluoro-functionalized graphene oxide via the Hunsdiecker reaction. Chem. Commun. 2016;52:390–393. PubMed

Donato K.Z., Tan H.L., Marangoni V.S., Martins M.V.S., Ng P.R., Costa M.C.F., Jain P., Lee S.J., Koon G.K.W., Donato R.K., Neto A.H.C. Graphene oxide classification and standardization. Sci. Rep.-UK. 2023;13:6064. PubMed PMC

Wang S., Tian Z., Dai S., Jiang D. Effect of pore density on gas permeation through nanoporous graphene membranes. Nanoscale. 2018;10:14660–14666. PubMed

Pandey P., Chauhan R.S. Preparation of gas separation membranes and their evaluation. Def. Sci. J. 2004;54(3):335–343.

Wang J., Shi Z., Zang Y., Jia H., Teraguchi M., Kaneko T., Aoki T. Macromolecular design for oxygen/nitrogen permselective membranes—top-performing polymers in 2020. Polymers. 2021;13(17):1–39. 3012. PubMed PMC

Robeson L.M. The upper bound revisited. J. Memb. Sci. 2008;320(1–2):390–400.

Illing G., Hellgardt K., Schonert M., Wakeman R.J., Jungbauer A. Toward ultrathin polyaniline films for gas separation. J. Memr. Sci. 2005;253(1–2):199–208.

Rezac M.E., Schöberl B. Transport and thermal properties of poly(ether imide)/acetylene-terminated monomer blends. J. Memr. Sci. 1999;156(2):211–222.

Liu G., Jin W., Xu N. Graphene-based membranes. Chem. Soc. Rev. 2015;44:5016–5030. PubMed

Claisse P.A. 2020. Transport Properties of Concrete: Modelling the Durability of Structures.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...