Application of diffusion tensor imaging of the facial nerve in preoperative planning for large vestibular schwannoma: a systematic review
Language English Country Germany Media electronic
Document type Systematic Review, Journal Article
PubMed
37950058
DOI
10.1007/s10143-023-02214-x
PII: 10.1007/s10143-023-02214-x
Knihovny.cz E-resources
- Keywords
- Acoustic schwannoma, Diffusion tensor imaging, Schwannoma imaging, Systematic review, Vestibular schwannoma,
- MeSH
- Humans MeSH
- Facial Nerve diagnostic imaging surgery pathology MeSH
- Facial Nerve Injuries * etiology MeSH
- Reproducibility of Results MeSH
- Neuroma, Acoustic * diagnostic imaging surgery complications MeSH
- Diffusion Tensor Imaging methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Systematic Review MeSH
The accurate identification and preservation of the facial nerve (FN) during vestibular schwannoma (VS) surgery is crucial for maintaining facial function. Investigating the application of diffusion tensor imaging (DTI) in preoperative planning for large VS surgery is provided. PubMed, Cochrane Library, Science Direct, ISI Web of Science, Embase, and additional sources were searched to identify cohort studies about the preoperative DTI usage for the FN tracking before large VS (≥ 2.5 cm) surgery published between 1990 and 2023. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed; the Newcastle-Ottawa Scale was used to assess the risk of bias and to evaluate limitations based on selection/outcome biases. A total of 8 publications yielding 149 VS (mean size 3.66 ± 0.81 cm) were included. Surgical concordance with preoperative DTI FN tracking was 91.67% (range 85-100%). Overall DTI reliability was 88.89% (range 81.81-95.83%). Larger tumor size predicted either DTI inaccurate finding or complete DTI failure (p = 0.001). VS size above > 3.5 cm was associated with a higher risk of DTI failure (p = 0.022), with a higher risk of inaccurate DTI finding preoperatively (p = 0.033), and with a higher House-Brackman score postoperatively (p = 0.007). Application of DTI in larger VS surgery is a valuable FN identification along with electrophysiological monitoring and neuronavigation, therefore also in its preservation and in lowering risk of complications. DTI represents a valuable adjunct to electrophysiological monitoring and neuronavigation in FN identification, applicable not only for smaller, but also larger VS.
See more in PubMed
Gupta VK, Thakker A, Gupta KK (2020) Vestibular schwannoma: what we know and where we are heading. Head Neck Pathol 14:1058–1066. https://doi.org/10.1007/s12105-020-01155-x PubMed DOI PMC
Xu M, Wang S, Jiang Y, Wang J, Xiong Y, Dong W, Yao Q, Xing Y, Liu F, Chen Z et al (2022) Single-cell RNA-seq reveals heterogeneity of cell communications between schwann cells and fibroblasts within vestibular schwannoma microenvironment. Am J Pathol 192:1230–1249. https://doi.org/10.1016/j.ajpath.2022.06.006 PubMed DOI
Goldbrunner R, Weller M, Regis J, Lund-Johansen M, Stavrinou P, Reuss D, Evans DG, Lefranc F, Sallabanda K, Falini A et al (2020) EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro Oncol 22:31–45. https://doi.org/10.1093/neuonc/noz153 PubMed DOI
Arlt F, Kasper J, Winkler D, Jähne K, Fehrenbach MK, Meixensberger J, Sander C (2022) Facial nerve function after microsurgical resection in vestibular schwannoma under neurophysiological monitoring. Front Neurol 13:850326. https://doi.org/10.3389/fneur.2022.850326 PubMed DOI PMC
Daoudi H, Lahlou G, Degos V, Sterkers O, Nguyen Y, Kalamarides M (2020) Improving facial nerve outcome and hearing preservation by different degrees of vestibular schwannoma resection guided by intraoperative facial nerve electromyography. Acta Neurochir 162:1983–1993. https://doi.org/10.1007/s00701-020-04397-4 PubMed DOI
Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61. https://doi.org/10.1007/s12031-007-0029-0 PubMed DOI
Fushimi Y, Miki Y, Okada T, Yamamoto A, Mori N, Hanakawa T, Urayama S, Aso T, Fukuyama H, Kikuta K et al (2007) Fractional anisotropy and mean diffusivity: comparison between 3.0-T and 1.5-T diffusion tensor imaging with parallel imaging using histogram and region of interest analysis. NMR Biomed 20:743–748. https://doi.org/10.1002/nbm.1139 PubMed DOI
Zolal A, Juratli TA, Podlesek D, Rieger B, Kitzler HH, Linn J, Schackert G, Sobottka SB (2017) Probabilistic tractography of the cranial nerves in vestibular schwannoma. World Neurosurg 107:47–53. https://doi.org/10.1016/j.wneu.2017.07.102 PubMed DOI
Savardekar AR, Patra DP, Thakur JD, Narayan V, Mohammed N, Bollam P, Nanda A (2018) Preoperative diffusion tensor imaging-fiber tracking for facial nerve identification in vestibular schwannoma: a systematic review on its evolution and current status with a pooled data analysis of surgical concordance rates. Neurosurg Focus 44:E5. https://doi.org/10.3171/2017.12.Focus17672 PubMed DOI
Baro V, Landi A, Brigadoi S, Castellaro M, Moretto M, Anglani M, Ermani M, Causin F, Zanoletti E, Denaro L et al (2019) Preoperative prediction of facial nerve in patients with vestibular schwannomas: the role of diffusion tensor imaging-a systematic review. World Neurosurg 125:24–31. https://doi.org/10.1016/j.wneu.2019.01.099 PubMed DOI
Wu X, Li M, Zhang Z, Li X, Di M, Song G, Wang X, Li M, Kong F, Liang J (2021) Reliability of preoperative prediction of the location of the facial nerve using diffusion tensor imaging-fiber tracking in vestibular schwannoma: a systematic review and meta-analysis. World Neurosurg 146:351–361.e353. https://doi.org/10.1016/j.wneu.2020.10.136 PubMed DOI
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71 PubMed DOI PMC
Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P (2000) The Newcastle–Ottawa scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
Reitzen SD, Babb JS, Lalwani AK (2009) Significance and reliability of the House-Brackmann grading system for regional facial nerve function. Otolaryngol Head Neck Surg 140:154–158. https://doi.org/10.1016/j.otohns.2008.11.021 PubMed DOI
Borkar SA, Garg A, Mankotia DS, Joseph SL, Suri A, Kumar R, Kale SS, Sharma BS (2016) Prediction of facial nerve position in large vestibular schwannomas using diffusion tensor imaging tractography and its intraoperative correlation. Neurol India 64:965–970. https://doi.org/10.4103/0028-3886.190270 PubMed DOI
Wei PH, Qi ZG, Chen G, Hu P, Li MC, Liang JT, Guo HC, Ling F, Bao YH (2015) Identification of cranial nerves near large vestibular schwannomas using superselective diffusion tensor tractography: experience with 23 cases. Acta Neurochir 157:1239–1249. https://doi.org/10.1007/s00701-015-2431-7 PubMed DOI
Gerganov VM, Giordano M, Samii M, Samii A (2011) Diffusion tensor imaging-based fiber tracking for prediction of the position of the facial nerve in relation to large vestibular schwannomas. J Neurosurg 115:1087–1093. https://doi.org/10.3171/2011.7.Jns11495 PubMed DOI
Song F, Hou Y, Sun G, Chen X, Xu B, Huang JH, Zhang J (2016) In vivo visualization of the facial nerve in patients with acoustic neuroma using diffusion tensor imaging-based fiber tracking. J Neurosurg 125:787–794. https://doi.org/10.3171/2015.7.Jns142922 PubMed DOI
Li H, Wang L, Hao S, Li D, Wu Z, Zhang L, Zhang J (2017) Identification of the facial nerve in relation to vestibular schwannoma using preoperative diffusion tensor tractography and intraoperative tractography-integrated neuronavigation system. World Neurosurg 107:669–677. https://doi.org/10.1016/j.wneu.2017.08.048 PubMed DOI
Zhang Y, Ge H, Xu M, Mei W (2023) Significance of preoperative nerve reconstruction using diffusion tensor imaging tractography for facial nerve protection in vestibular schwannoma. J Korean Neurosurg Soc 66:–183, 189. https://doi.org/10.3340/jkns.2022.0134
Szmuda T, Słoniewski P, Ali S, Pereira PMG, Pacholski M, Timemy F, Sabisz A, Szurowska E, Kierońska S (2020) Reliability of diffusion tensor tractography of facial nerve in cerebello-pontine angle tumours. Neurol Neurochir Pol 54:73–82. https://doi.org/10.5603/PJNNS.a2020.0001 PubMed DOI
Zhang Y, Mao Z, Wei P, Jin Y, Ma L, Zhang J, Yu X (2017) Preoperative prediction of location and shape of facial nerve in patients with large vestibular schwannomas using diffusion tensor imaging-based fiber tracking. World Neurosurg 99:70–78. https://doi.org/10.1016/j.wneu.2016.11.110 PubMed DOI
Samii M, Matthies C (1997) Management of 1000 vestibular schwannomas (acoustic neuromas): surgical management and results with an emphasis on complications and how to avoid them. Neurosurgery 40:11–21. https://doi.org/10.1097/00006123-199701000-00002 PubMed DOI
Bae CW, Cho YH, Hong SH, Kim JH, Lee JK, Kim CJ (2007) The anatomical location and course of the facial nerve in vestibular schwannomas: a study of 163 surgically treated cases. J Korean Neurosurg Soc 42:450–454. https://doi.org/10.3340/jkns.2007.42.6.450 PubMed DOI PMC
Mastronardi L, Cacciotti G, Roperto R, Di Scipio E, Tonelli MP, Carpineta E (2016) Position and course of facial nerve and postoperative facial nerve results in vestibular schwannoma microsurgery. World Neurosurg 94:174–180. https://doi.org/10.1016/j.wneu.2016.06.107 PubMed DOI
Youssef AS, Downes AE (2009) Intraoperative neurophysiological monitoring in vestibular schwannoma surgery: advances and clinical implications. Neurosurg Focus 27:E9. https://doi.org/10.3171/2009.8.Focus09144 PubMed DOI
Abele TA, Besachio DA, Quigley EP, Gurgel RK, Shelton C, Harnsberger HR, Wiggins RH 3rd. (2014) Diagnostic accuracy of screening MR imaging using unenhanced axial CISS and coronal T2WI for detection of small internal auditory canal lesions. AJNR Am J Neuroradiol 35:2366–2370. https://doi.org/10.3174/ajnr.A4041 PubMed DOI PMC
Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632. https://doi.org/10.1002/1522-2594(200010)44:4<625::aid-mrm17>3.0.co;2-o PubMed DOI
Behan B, Chen DQ, Sammartino F, DeSouza DD, Wharton-Shukster E, Hodaie M (2017) Comparison of diffusion-weighted MRI reconstruction methods for visualization of cranial nerves in posterior fossa surgery. Front Neurosci 11:554. https://doi.org/10.3389/fnins.2017.00554 PubMed DOI PMC
Jeong HK, Dewey BE, Hirtle JA, Lavin P, Sriram S, Pawate S, Gore JC, Anderson AW, Kang H, Smith SA (2015) Improved diffusion tensor imaging of the optic nerve using multishot two-dimensional navigated acquisitions. Magn Reson Med 74:953–963. https://doi.org/10.1002/mrm.25469 PubMed DOI
Vos SB, Haakma W, Versnel H, Froeling M, Speleman L, Dik P, Viergever MA, Leemans A, Grolman W (2015) Diffusion tensor imaging of the auditory nerve in patients with long-term single-sided deafness. Hear Res 323:1–8. https://doi.org/10.1016/j.heares.2015.01.010 PubMed DOI
Taoka T, Hirabayashi H, Nakagawa H, Sakamoto M, Myochin K, Hirohashi S, Iwasaki S, Sakaki T, Kichikawa K (2006) Displacement of the facial nerve course by vestibular schwannoma: preoperative visualization using diffusion tensor tractography. J Magn Reson Imaging 24:1005–1010. https://doi.org/10.1002/jmri.20725 PubMed DOI
Okada T, Miki Y, Fushimi Y, Hanakawa T, Kanagaki M, Yamamoto A, Urayama S, Fukuyama H, Hiraoka M, Togashi K (2006) Diffusion-tensor fiber tractography: intraindividual comparison of 3.0-T and 1.5-T MR imaging. Radiology 238:668–678. https://doi.org/10.1148/radiol.2382042192 PubMed DOI
Samala R, Borkar SA, Sharma R, Garg A, Suri A, Gupta D, Kale SS (2019) Effectiveness of preoperative facial nerve diffusion tensor imaging tractography for preservation of facial nerve function in surgery for large vestibular schwannomas: results of a prospective randomized study. Neurol India 67:149–154. https://doi.org/10.4103/0028-3886.253631 PubMed DOI