• This record comes from PubMed

A systematic review of the development and application of home cage monitoring in laboratory mice and rats

. 2023 Nov 13 ; 21 (1) : 256. [epub] 20231113

Language English Country Great Britain, England Media electronic

Document type Systematic Review, Journal Article, Research Support, Non-U.S. Gov't

Grant support
EXC 2002/1 "Science of Intelligence" - project number 390523135 Deutsche Forschungsgemeinschaft
EXC 2002/1 "Science of Intelligence" - project number 390523135 Deutsche Forschungsgemeinschaft
EXC 2002/1 "Science of Intelligence" - project number 390523135 Deutsche Forschungsgemeinschaft
EXC 2002/1 "Science of Intelligence" - project number 390523135 Deutsche Forschungsgemeinschaft
EXC 2002/1 "Science of Intelligence" - project number 390523135 Deutsche Forschungsgemeinschaft
EXC 2002/1 "Science of Intelligence" - project number 390523135 Deutsche Forschungsgemeinschaft
EXC 2002/1 "Science of Intelligence" - project number 390523135 Deutsche Forschungsgemeinschaft

Links

PubMed 37953247
PubMed Central PMC10642068
DOI 10.1186/s12915-023-01751-7
PII: 10.1186/s12915-023-01751-7
Knihovny.cz E-resources

BACKGROUND: Traditionally, in biomedical animal research, laboratory rodents are individually examined in test apparatuses outside of their home cages at selected time points. However, the outcome of such tests can be influenced by various factors and valuable information may be missed when the animals are only monitored for short periods. These issues can be overcome by longitudinally monitoring mice and rats in their home cages. To shed light on the development of home cage monitoring (HCM) and the current state-of-the-art, a systematic review was carried out on 521 publications retrieved through PubMed and Web of Science. RESULTS: Both the absolute (~ × 26) and relative (~ × 7) number of HCM-related publications increased from 1974 to 2020. There was a clear bias towards males and individually housed animals, but during the past decade (2011-2020), an increasing number of studies used both sexes and group housing. In most studies, animals were kept for short (up to 4 weeks) time periods in the HCM systems; intermediate time periods (4-12 weeks) increased in frequency in the years between 2011 and 2020. Before the 2000s, HCM techniques were predominantly applied for less than 12 h, while 24-h measurements have been more frequent since the 2000s. The systematic review demonstrated that manual monitoring is decreasing in relation to automatic techniques but still relevant. Until (and including) the 1990s, most techniques were applied manually but have been progressively replaced by automation since the 2000s. Independent of the year of publication, the main behavioral parameters measured were locomotor activity, feeding, and social behaviors; the main physiological parameters were heart rate and electrocardiography. External appearance-related parameters were rarely examined in the home cages. Due to technological progress and application of artificial intelligence, more refined and detailed behavioral parameters have been investigated in the home cage more recently. CONCLUSIONS: Over the period covered in this study, techniques for HCM of mice and rats have improved considerably. This development is ongoing and further progress as well as validation of HCM systems will extend the applications to allow for continuous, longitudinal, non-invasive monitoring of an increasing range of parameters in group-housed small rodents in their home cages.

Department of Animal Science Biotechnical Faculty University of Ljubljana Ljubljana Slovenia

Department of Experimental Medicine University of Copenhagen Copenhagen Denmark

Department of Veterinary Medicine Faculty of Agriculture University of East Sarajevo East Sarajevo Bosnia and Herzegovina

Div Clinical Physiology Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden

Faculty of Veterinary Medicine Spiru Haret University Bucharest Romania

German Federal Institute for Risk Assessment Berlin Germany

Helmholtz Zentrum München German Research Centre for Environmental Health Munich Germany

iNOVA4Health NOVA Medical School Faculdade de Ciências Médicas NMS FCM Universidade Nova de Lisboa Lisbon Portugal

Institute of Animal Welfare Animal Behavior and Laboratory Animal Science Department of Veterinary Medicine Freie Universität Berlin Berlin Germany

Institute of Biochemistry and Cell Biology National Research Council CNR Rome Italy

Institute of Medical Physiology Richard Burian Faculty of Medicine University of Belgrade Belgrade Serbia

International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic

Istituto Superiore Di Sanità Research Coordination and Support Service Rome Italy

Laboratory of Preclinical Testing of Higher Standard Neurobiology Center Nencki Institute of Experimental Biology Polish Academy of Science Warsaw Poland

Lithuanian University of Health Sciences Medical Academy Institute of Physiology and Pharmacology Kaunas Lithuania

Neuroscience Center Helsinki Institute of Life Science University of Helsinki Helsinki Finland

Preclinical Phenotyping Facility Vienna Biocenter Core Facilities Vienna Austria

Research Institute for Experimental Medicine and NeuroCure Cluster of Excellence Animal Behaviour Phenotyping Facility Charité Universitätsmedizin Berlin Berlin Germany

Science of Intelligence Research Cluster of Excellence Marchstr 23 10587 Berlin Germany

Université de Strasbourg CNRS Inserm IGBMC Institut Clinique de la Souris CELPHEDIA PHENOMIN UMR 7104 UMR S 1258 Illkirch 67400 France

Université de Strasbourg CNRS INSERM Institut Clinique de La Souris CELPHEDIA PHENOMIN 1 Rue Laurent Fries Illkirch 67404 France

Université de Strasbourg CNRS Inserm Institut de Génétique et de Biologie Moléculaire et Cellulaire UMR 7104 UMR S 1258 Illkirch 67400 France

See more in PubMed

Crawley JN. What's wrong with my mouse?: behavioral phenotyping of transgenic and knockout mice. 2. Hoboken, New Jersey: John Wiley & Sons; 2007.

Crawley JN. Exploratory behavior models of anxiety in mice. Neurosci Biobehav Rev. 1985;9:37–44. doi: 10.1016/0149-7634(85)90030-2. PubMed DOI

Chesler EJ, Wilson SG, Lariviere WR, Rodriguez-Zas SL, Mogil JS. Influences of laboratory environment on behavior. Nat Neurosci. 2002;5:1101–1102. doi: 10.1038/nn1102-1101. PubMed DOI

Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: interactions with laboratory environment. Science. 1999;284:1670–1672. doi: 10.1126/science.284.5420.1670. PubMed DOI

Schuessler BP, Zambetti PR, Kukuoka KM, Kim EJ, Kim JJ. The risky closed economy: a holistic, longitudinal approach to studying fear and anxiety in rodents. Front Behav Neurosci. 2020;14:594568. doi: 10.3389/fnbeh.2020.594568. PubMed DOI PMC

Spruijt BM, DeVisser L. Advanced behavioural screening: automated home cage ethology. Drug Discov Today Technol. 2006;3:231–237. doi: 10.1016/j.ddtec.2006.06.010. PubMed DOI

Voikar V, Gaburro S. Three pillars of automated home-cage phenotyping of mice: novel findings, refinement, and reproducibility based on literature and experience. Front Behav Neurosci. 2020;14:575434. doi: 10.3389/fnbeh.2020.575434. PubMed DOI PMC

Kas MJ, Van Ree JM. Dissecting complex behaviours in the post-genomic era. Trends Neurosci. 2004;27:366–369. doi: 10.1016/j.tins.2004.04.011. PubMed DOI

Rudeck J, Vogl S, Banneke S, Schönfelder G, Lewejohann L. Repeatability analysis improves the reliability of behavioral data. PLoS ONE. 2020;15:e0230900. doi: 10.1371/journal.pone.0230900. PubMed DOI PMC

Clement JG, Mills P, Brockway B. Use of telemetry to record body temperature and activity in mice. J Pharmacol Methods. 1989;21:129–140. doi: 10.1016/0160-5402(89)90031-4. PubMed DOI

Gomes MGS, Tractenberg SG, Orso R, Viola TW, Grassi-Oliveira R. Sex differences in risk behavior parameters in adolescent mice: Relationship with brain-derived neurotrophic factor in the medial prefrontal cortex. Neurosci Lett. 2022;766:136339. doi: 10.1016/j.neulet.2021.136339. PubMed DOI

Habedank A, Kahnau P, Lewejohann L. Alternate without alternative: neither preference nor learning explains behaviour of C57BL/6J mice in the T-maze. Behaviour. 2021;158:625–662. doi: 10.1163/1568539X-bja10085. DOI

Matto V, Harro J, Allikmets L. The effects of cholecystokinin A and B receptor antagonists on exploratory behaviour in the elevated zero-maze in rat. Neuropharmacology. 1997;36:389–396. doi: 10.1016/S0028-3908(97)00011-7. PubMed DOI

Valentinuzzi VS, Buxton OM, Chang AM, Scarbrough K, Ferrari EA, Takahashi JS, et al. Locomotor response to an open field during C57BL/6J active and inactive phases: differences dependent on conditions of illumination. Physiol Behav. 2000;69:269–275. doi: 10.1016/S0031-9384(00)00219-5. PubMed DOI

Acosta J, Bussi IL, Esquivel M, Höcht C, Golombek DA, Agostino PV. Circadian modulation of motivation in mice. Behav Brain Res. 2020;382:112471. doi: 10.1016/j.bbr.2020.112471. PubMed DOI

Manouze H, Ghestem A, Poillerat V, Bennis M, Ba-M'hamed S, Benoliel JJ, et al. Effects of single cage housing on stress, cognitive, and seizure parameters in the rat and mouse pilocarpine models of epilepsy. eNeuro. 2019;6:ENEURO.0179–18.2019. doi: 10.1523/ENEURO.0179-18.2019. PubMed DOI PMC

Gouveia K, Hurst JL. Reducing mouse anxiety during handling: effect of experience with handling tunnels. PLoS ONE. 2013;8:e66401. doi: 10.1371/journal.pone.0066401. PubMed DOI PMC

Hurst JL, West RS. Taming anxiety in laboratory mice. Nat Methods. 2010;7:825–826. doi: 10.1038/nmeth.1500. PubMed DOI

Krohn T, Sørensen D, Ottesen J, Hansen AK. The effects of individual housing on mice and rats: a review. Anim Welf. 2006;15:343–352. doi: 10.1017/S0962728600030669. DOI

Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011;10:712. doi: 10.1038/nrd3439-c1. PubMed DOI

Macleod M, Mohan S. Reproducibility and rigor in animal-based research. ILAR J. 2019;60:17–23. doi: 10.1093/ilar/ilz015. PubMed DOI PMC

Richter SH, von Kortzfleisch V. It is time for an empirically informed paradigm shift in animal research. Nat Rev Neurosci. 2020;21:660. doi: 10.1038/s41583-020-0369-0. PubMed DOI

von Kortzfleisch VT, Karp NA, Palme R, Kaiser S, Sachser N, Richter SH. Improving reproducibility in animal research by splitting the study population into several 'mini-experiments'. Sci Rep. 2020;10:16579. doi: 10.1038/s41598-020-73503-4. PubMed DOI PMC

Diederich K, Schmitt K, Schwedhelm P, Bert B, Heinl C. A guide to open science practices for animal research. PLoS Biol. 2022;20:e3001810. doi: 10.1371/journal.pbio.3001810. PubMed DOI PMC

Krackow S, Vannoni E, Codita A, Mohammed AH, Cirulli F, Branchi I, et al. Consistent behavioral phenotype differences between inbred mouse strains in the IntelliCage. Genes Brain Behav. 2010;9:722–731. doi: 10.1111/j.1601-183X.2010.00606.x. PubMed DOI

Lewejohann L, Schwabe K, Häger C, Jirkof P. Impulse for animal welfare outside the experiment. Lab Anim. 2020;54:150–158. doi: 10.1177/0023677219891754. PubMed DOI PMC

Baran SW, Bratcher N, Dennis J, Gaburro S, Karlsson EM, Maguire S, et al. Emerging role of translational digital biomarkers within home cage monitoring technologies in preclinical drug discovery and development. Front Behav Neurosci. 2022;15:758274. doi: 10.3389/fnbeh.2021.758274. PubMed DOI PMC

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. ABI Nr. L276/33-L276/79 (last accessed on 11 November 2022). Available under: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32010L0063.

Adams LM, Geyer MA. LSD-induced alterations of locomotor patterns and exploration in rats. Psychopharmacology. 1982;77:179–185. doi: 10.1007/BF00431945. PubMed DOI

Allen DL, Harrison BC, Maass A, Bell ML, Byrnes WC, Leinwand LA. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. J Appl Physiol. 1985;2001(90):1900–1908. PubMed

Babineau BA, Yang M, Berman RF, Crawley JN. Low home cage social behaviors in BTBR T+tf/J mice during juvenile development. Physiol Behav. 2013;114–115:49–54. doi: 10.1016/j.physbeh.2013.03.006. PubMed DOI PMC

Beatty WW, Costello KB. Olfactory bulbectomy and play fighting in juvenile rats. Physiol Behav. 1983;30:525–528. doi: 10.1016/0031-9384(83)90215-9. PubMed DOI

Breuer ME, McGinnis MY, Lumia AR, Possidente BP. Aggression in male rats receiving anabolic androgenic steroids: effects of social and environmental provocation. Horm Behav. 2001;40:409–418. doi: 10.1006/hbeh.2001.1706. PubMed DOI

Francis NA, Bohlke K, Kanold PO. Automated behavioral experiments in mice reveal periodic cycles of task engagement within circadian rhythms. eNeuro. 2019;6:ENEURO.0121–19.2019. PubMed PMC

Remmelink E, Chau U, Smit AB, Verhage M, Loos M. A one-week 5-choice serial reaction time task to measure impulsivity and attention in adult and adolescent mice. Sci Rep. 2017;7:42519. doi: 10.1038/srep42519. PubMed DOI PMC

Endo T, Maekawa F, Võikar V, Haijima A, Uemura Y, Zhang Y, et al. Automated test of behavioral flexibility in mice using a behavioral sequencing task in IntelliCage. Behav Brain Res. 2011;221:172–181. doi: 10.1016/j.bbr.2011.02.037. PubMed DOI

Abbott CR, Small CJ, Sajedi A, Smith KL, Parkinson JR, Broadhead LL, et al. The importance of acclimatisation and habituation to experimental conditions when investigating the anorectic effects of gastrointestinal hormones in the rat. Int J Obes (Lond) 2006;30:288–292. doi: 10.1038/sj.ijo.0803137. PubMed DOI

Bonasera SJ, Chaudoin TR, Goulding EH, Mittek M, Dunaevsky A. Decreased home cage movement and oromotor impairments in adult Fmr1-KO mice. Genes Brain Behav. 2017;16:564–573. doi: 10.1111/gbb.12374. PubMed DOI PMC

Machado TD, Dalle Molle R, Laureano DP, Portella AK, Werlang IC, Benetti Cda S, et al. Early life stress is associated with anxiety, increased stress responsivity and preference for "comfort foods" in adult female rats. Stress. 2013;16:549–556. doi: 10.3109/10253890.2013.816841. PubMed DOI

Bohus B. Telemetered heart rate responses of the rat during free and learned behavior. Biotelemetry. 1974;1:193–201. PubMed

Brodkin J, Bradbury M, Busse C, Warren N, Bristow LJ, Varney MA. Reduced stress-induced hyperthermia in mGluR5 knockout mice. Eur J Neurosci. 2002;16:2241–2244. doi: 10.1046/j.1460-9568.2002.02294.x. PubMed DOI

Drugan RC, Hibl PT, Kelly KJ, Dady KF, Hale MW, Lowry CA. Prior cold water swim stress alters immobility in the forced swim test and associated activation of serotonergic neurons in the rat dorsal raphe nucleus. Neuroscience. 2013;253:221–234. doi: 10.1016/j.neuroscience.2013.08.038. PubMed DOI PMC

Kaneko K, Chikamoto A, Hsu JC, Tochinai R, Sekizawa SI, Yamamoto M, et al. Effects of environmental enrichment on autonomic nervous activity in NSY mice. Exp Anim. 2020;69:161–167. doi: 10.1538/expanim.19-0103. PubMed DOI PMC

Richardson CA. The power of automated behavioural homecage technologies in characterizing disease progression in laboratory mice: a review. Appl Anim Behav Sci. 2015;163:19–27. doi: 10.1016/j.applanim.2014.11.018. DOI

Maroteaux G, Loos M, van der Sluis S, Koopmans B, Aarts E, van Gassen K, et al. High-throughput phenotyping of avoidance learning in mice discriminates different genotypes and identifies a novel gene. Genes Brain Behav. 2012;11:772–784. doi: 10.1111/j.1601-183X.2012.00820.x. PubMed DOI PMC

Pernold K, Iannello F, Low BE, Rigamonti M, Rosati G, Scavizzi F, et al. Towards large scale automated cage monitoring - Diurnal rhythm and impact of interventions on in-cage activity of C57BL/6J mice recorded 24/7 with a non-disrupting capacitive-based technique. PLoS ONE. 2019;14:e0211063. doi: 10.1371/journal.pone.0211063. PubMed DOI PMC

Golini E, Rigamonti M, Iannello F, De Rosa C, Scavizzi F, Raspa M, et al. A non-invasive digital biomarker for the detection of rest disturbances in the SOD1G93A mouse model of ALS. Front Neurosci. 2020;14:896. doi: 10.3389/fnins.2020.00896. PubMed DOI PMC

Lewejohann L, Hoppmann AM, Kegel P, Kritzler M, Krüger A, Sachser N. Behavioral phenotyping of a murine model of Alzheimer's disease in a seminaturalistic environment using RFID tracking. Behav Res Methods. 2009;41:850–856. doi: 10.3758/BRM.41.3.850. PubMed DOI

Mieske P, Diederich K, Lewejohann L. Roaming in a land of milk and honey: life trajectories and metabolic rate of female inbred mice living in a semi naturalistic environment. Animals (Basel). 2021;11:3002. PubMed PMC

Lipp HP. In: Automated behavioral analysis of mice using INTELLICAGE: inter-laboratory comparisons and validation with exploratory behavior and spatial learning. Noldus LPJJ, Grieco F, Loijens LWS, Zimmermann PH, editors. Wageningen: Measuring Behavior; 2005. pp. 66–9.

Winslow W, McDonough I, Tallino S, Decker A, Vural AS, Velazquez R. IntelliCage automated behavioral phenotyping reveals behavior deficits in the 3xTg-AD mouse model of Alzheimer's Disease associated with brain weight. Front Aging Neurosci. 2021;13:720214. doi: 10.3389/fnagi.2021.720214. PubMed DOI PMC

Habedank A, Urmersbach B, Kahnau P, Lewejohann L. O mouse, where art thou? The Mouse Position Surveillance System (MoPSS)-an RFID-based tracking system. Behav Res Methods. 2022;54:676–689. doi: 10.3758/s13428-021-01593-7. PubMed DOI PMC

Hobbiesiefken U, Urmersbach B, Jaap A, Diederich K, Lewejohann L. Rating enrichment items by female group-housed laboratory mice in multiple binary choice tests using an RFID-based tracking system. PLoS ONE. 2023;18:e0278709. doi: 10.1371/journal.pone.0278709. PubMed DOI PMC

de Chaumont F, Ey E, Torquet N, Lagache T, Dallongeville S, Imbert A, et al. Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning. Nat Biomed Eng. 2019;3:930–942. doi: 10.1038/s41551-019-0396-1. PubMed DOI

Arroyo-Araujo M, Graf R, Maco M, van Dam E, Schenker E, Drinkenburg W, et al. Reproducibility via coordinated standardization: a multi-center study in a Shank2 genetic rat model for Autism Spectrum Disorders. Sci Rep. 2019;9:11602. doi: 10.1038/s41598-019-47981-0. PubMed DOI PMC

Robinson L, Spruijt B, Riedel G. Between and within laboratory reliability of mouse behaviour recorded in home-cage and open-field. J Neurosci Methods. 2018;300:10–19. doi: 10.1016/j.jneumeth.2017.11.019. PubMed DOI

Häger C, Keubler LM, Talbot SR, Biernot S, Weegh N, Buchheister S, et al. Running in the wheel: defining individual severity levels in mice. PLoS Biol. 2018;16:e2006159. doi: 10.1371/journal.pbio.2006159. PubMed DOI PMC

Weegh N, Füner J, Janke O, Winter Y, Jung C, Struve B, et al. Wheel running behaviour in group-housed female mice indicates disturbed wellbeing due to DSS colitis. Lab Anim. 2020;54:63–72. doi: 10.1177/0023677219879455. PubMed DOI

Spivak DI, Kent RE. Ologs: a categorical framework for knowledge representation. PLoS ONE. 2012;7:e24274. doi: 10.1371/journal.pone.0024274. PubMed DOI PMC

Tecott LH, Nestler EJ. Neurobehavioral assessment in the information age. Nat Neurosci. 2004;7:462–466. doi: 10.1038/nn1225. PubMed DOI

Bornmann L, Haunschild R, Mutz R. Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanit Soc Sci Commun. 2021;8:224. doi: 10.1057/s41599-021-00903-w. DOI

Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35:565–572. doi: 10.1016/j.neubiorev.2010.07.002. PubMed DOI PMC

Flórez-Vargas O, Brass A, Karystianis G, Bramhall M, Stevens R, Cruickshank S, et al. Bias in the reporting of sex and age in biomedical research on mouse models. Elife. 2016;5:e13615. doi: 10.7554/eLife.13615. PubMed DOI PMC

Meziane H, Ouagazzal AM, Aubert L, Wietrzych M, Krezel W. Estrous cycle effects on behavior of C57BL/6J and BALB/cByJ female mice: implications for phenotyping strategies. Genes Brain Behav. 2007;6:192–200. doi: 10.1111/j.1601-183X.2006.00249.x. PubMed DOI

Mogil JS, Chanda ML. The case for the inclusion of female subjects in basic science studies of pain. Pain. 2005;117:1–5. doi: 10.1016/j.pain.2005.06.020. PubMed DOI

Becker JB, Prendergast BJ, Liang JW. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol Sex Differ. 2016;7:34. doi: 10.1186/s13293-016-0087-5. PubMed DOI PMC

Fritz AK, Amrein I, Wolfer DP. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task. Am J Med Genet C Semin Med Genet. 2017;175:380–391. doi: 10.1002/ajmg.c.31565. PubMed DOI PMC

Prendergast BJ, Onishi KG, Zucker I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci Biobehav Rev. 2014;40:1–5. doi: 10.1016/j.neubiorev.2014.01.001. PubMed DOI

Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509:282–283. doi: 10.1038/509282a. PubMed DOI PMC

Olsson IAS, Westlund K. More than numbers matter: the effect of social factors on behaviour and welfare of laboratory rodents and non-human primates. Appl Anim Behav Sci. 2007;103:229–254. doi: 10.1016/j.applanim.2006.05.022. DOI

Chourbaji S, Zacher C, Sanchis-Segura C, Spanagel R, Gass P. Social and structural housing conditions influence the development of a depressive-like phenotype in the learned helplessness paradigm in male mice. Behav Brain Res. 2005;164:100–106. doi: 10.1016/j.bbr.2005.06.003. PubMed DOI

Kalliokoski O, Teilmann AC, Jacobsen KR, Abelson KS, Hau J. The lonely mouse - single housing affects serotonergic signaling integrity measured by 8-OH-DPAT-induced hypothermia in male mice. PLoS ONE. 2014;9:e111065. doi: 10.1371/journal.pone.0111065. PubMed DOI PMC

Berry A, Bellisario V, Capoccia S, Tirassa P, Calza A, Alleva E, et al. Social deprivation stress is a triggering factor for the emergence of anxiety- and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6J mice. Psychoneuroendocrinology. 2012;37:762–772. doi: 10.1016/j.psyneuen.2011.09.007. PubMed DOI

Bartolomucci A, Palanza P, Sacerdote P, Ceresini G, Chirieleison A, Panerai AE, et al. Individual housing induces altered immuno-endocrine responses to psychological stress in male mice. Psychoneuroendocrinology. 2003;28:540–558. doi: 10.1016/S0306-4530(02)00039-2. PubMed DOI

Valzelli L. The, "isolation syndrome" in mice. Psychopharmacologia. 1973;31:305–320. doi: 10.1007/BF00421275. PubMed DOI

Sun M, Choi EY, Magee DJ, Stets CW, During MJ, Lin EJ. Metabolic effects of social isolation in adult C57BL/6 mice. Int Sch Res Notices. 2014;2014:690950. PubMed PMC

Cacioppo S, Capitanio JP, Cacioppo JT. Toward a neurology of loneliness. Psychol Bull. 2014;140:1464–1504. doi: 10.1037/a0037618. PubMed DOI PMC

Huang HJ, Liang KC, Ke HC, Chang YY, Hsieh-Li HM. Long-term social isolation exacerbates the impairment of spatial working memory in APP/PS1 transgenic mice. Brain Res. 2011;1371:150–160. doi: 10.1016/j.brainres.2010.11.043. PubMed DOI

Kappel S, Hawkins P, Mendl MT. To group or not to group? Good practice for housing male laboratory mice. Animals (Basel) 2017;7:88. doi: 10.3390/ani7120088. PubMed DOI PMC

Van Loo PL, Van Zutphen LF, Baumans V. Male management: coping with aggression problems in male laboratory mice. Lab Anim. 2003;37:300–313. doi: 10.1258/002367703322389870. PubMed DOI

Weber EM, Dallaire JA, Gaskill BN, Pritchett-Corning KR, Garner JP. Aggression in group-housed laboratory mice: why can't we solve the problem? Lab Anim (NY) 2017;46:157–161. doi: 10.1038/laban.1219. PubMed DOI

Lidster K, Owen K, Browne WJ, Prescott MJ. Cage aggression in group-housed laboratory male mice: an international data crowdsourcing project. Sci Rep. 2019;9:15211. doi: 10.1038/s41598-019-51674-z. PubMed DOI PMC

Weber EM, Zidar J, Ewaldsson B, Askevik K, Udén E, Svensk E, et al. Aggression in group-housed male mice: a systematic review. Animals. 2023;13:143. doi: 10.3390/ani13010143. PubMed DOI PMC

Doty RL. Odor-guided behavior in mammals. Experientia. 1986;42:257–271. doi: 10.1007/BF01942506. PubMed DOI

Lim MA, Defensor EB, Mechanic JA, Shah PP, Jaime EA, Roberts CR, et al. Retrospective analysis of the effects of identification procedures and cage changing by using data from automated, continuous monitoring. J Am Assoc Lab Anim Sci. 2019;58:126–141. doi: 10.30802/AALAS-JAALAS-18-000056. PubMed DOI PMC

Febinger HY, George A, Priestley J, Toth LA, Opp MR. Effects of housing condition and cage change on characteristics of sleep in mice. J Am Assoc Lab Anim Sci. 2014;53:29–37. PubMed PMC

Saibaba P, Sales GD, Stodulski G, Hau J. Behaviour of rats in their home cages: daytime variations and effects of routine husbandry procedures analysed by time sampling techniques. Lab Anim. 1996;30:13–21. doi: 10.1258/002367796780744875. PubMed DOI

Duke JL, Zammit TG, Lawson DM. The effects of routine cage-changing on cardiovascular and behavioral parameters in male Sprague-Dawley rats. Contemp Top Lab Anim Sci. 2001;40:17–20. PubMed

Meller A, Kasanen I, Ruksenas O, Apanaviciene N, Baturaite Z, Voipio HM, et al. Refining cage change routines: comparison of cardiovascular responses to three different ways of cage change in rats. Lab Anim. 2011;45:167–173. doi: 10.1258/la.2011.010134. PubMed DOI

Rasmussen S, Miller MM, Filipski SB, Tolwani RJ. Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Anim Sci. 2011;50:479–483. PubMed PMC

Ghosal S, Nunley A, Mahbod P, Lewis AG, Smith EP, Tong J, et al. Mouse handling limits the impact of stress on metabolic endpoints. Physiol Behav. 2015;150:31–37. doi: 10.1016/j.physbeh.2015.06.021. PubMed DOI PMC

Freund J, Brandmaier AM, Lewejohann L, Kirste I, Kritzler M, Krüger A, et al. Emergence of individuality in genetically identical mice. Science. 2013;340:756–759. doi: 10.1126/science.1235294. PubMed DOI

Freund J, Brandmaier AM, Lewejohann L, Kirste I, Kritzler M, Krüger A, et al. Association between exploratory activity and social individuality in genetically identical mice living in the same enriched environment. Neuroscience. 2015;309:140–152. doi: 10.1016/j.neuroscience.2015.05.027. PubMed DOI

Lewejohann L, Zipser B, Sachser N. "Personality" in laboratory mice used for biomedical research: a way of understanding variability? Dev Psychobiol. 2011;53:624–630. doi: 10.1002/dev.20553. PubMed DOI

Ripperger JA, Jud C, Albrecht U. The daily rhythm of mice. FEBS Lett. 2011;585:1384–1392. doi: 10.1016/j.febslet.2011.02.027. PubMed DOI

Eikelboom R, Lattanzio SB. Wheel access duration in rats: II. Day-night and within-session changes Behav Neurosci. 2003;117:825–832. PubMed

Burkholder T, Foltz C, Karlsson E, Linton CG, Smith JM. Health evaluation of experimental laboratory mice. Curr Protoc Mouse Biol. 2012;2:145–165. doi: 10.1002/9780470942390.mo110217. PubMed DOI PMC

Wahlsten D, Metten P, Phillips TJ, Boehm SL, 2nd, Burkhart-Kasch S, Dorow J, et al. Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol. 2003;54:283–311. doi: 10.1002/neu.10173. PubMed DOI

Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, Tuttle AH, et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods. 2014;11:629–632. doi: 10.1038/nmeth.2935. PubMed DOI

von Kortzfleisch VT, Ambrée O, Karp NA, Meyer N, Novak J, Palme R, et al. Do multiple experimenters improve the reproducibility of animal studies? PLoS Biol. 2022;20:e3001564. doi: 10.1371/journal.pbio.3001564. PubMed DOI PMC

Stinus L, Gaffori O, Simon H, Le Moal M. Disappearance of hoarding and disorganization of eating behavior after ventral mesencephalic tegmentum lesions in rats. J Comp Physiol Psychol. 1978;92:289–296. doi: 10.1037/h0077467. PubMed DOI

Young RC, Ervin GN, Smith GP. Abnormal open field behavior after anterolateral hypothalamic injection of 6-hydroxydopamine. Pharmacol Biochem Behav. 1976;5:565–570. doi: 10.1016/0091-3057(76)90270-7. PubMed DOI

Zwirner PP, Porsolt RD, Loew DM. Inter-group aggression in mice: a new method for testing the effects of centrally active drugs. Psychopharmacologia. 1975;45:133–138. doi: 10.1007/BF00429051. PubMed DOI

Tricklebank MD, Smart JL, Bloxam DL, Curzon G. Effects of chronic experimental liver dysfunction and L-tryptophan on behaviour in the rat. Pharmacol Biochem Behav. 1978;9:181–189. doi: 10.1016/0091-3057(78)90162-4. PubMed DOI

Kumstel S, Vasudevan P, Palme R, Zhang X, Wendt EHU, David R, et al. Benefits of non-invasive methods compared to telemetry for distress analysis in a murine model of pancreatic cancer. J Adv Res. 2020;21:35–47. doi: 10.1016/j.jare.2019.09.002. PubMed DOI PMC

Fares R, Flénet T, Vial J, Ravaz M, Roger V, Bory C, et al. Non invasive jacketed telemetry in socially-housed rats for a combined assessment of respiratory system, electrocardiogram and activity using the DECRO system. J Pharmacol Toxicol Methods. 2022;117:107195. doi: 10.1016/j.vascn.2022.107195. PubMed DOI

Bohnslav JP, Wimalasena NK, Clausing KJ, Dai YY, Yarmolinsky DA, Cruz T, et al. DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels. Elife. 2021;10:e63377. doi: 10.7554/eLife.63377. PubMed DOI PMC

Pereira TD, Tabris N, Matsliah A, Turner DM, Li J, Ravindranath S, et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat Methods. 2022;19:486–495. doi: 10.1038/s41592-022-01426-1. PubMed DOI PMC

Lauer J, Zhou M, Ye S, Menegas W, Schneider S, Nath T, et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat Methods. 2022;19:496–504. doi: 10.1038/s41592-022-01443-0. PubMed DOI PMC

Scells H, Zuccon G. Searchrefiner: a query visualisation and understanding tool for systematic reviews. In: Proceedings of the 27th International CIKM Conference on Information and Knowledge Management. 2018. pp. 1939–42.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...