Contrasting Environmental Drivers Determine Biodiversity Patterns in Epiphytic Lichen Communities along a European Gradient
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CGL2013-47010-P
Ministerio de Economía, Industria y Competitividad, Gobierno de España
EEBB-I-17-12573
Ministerio de Economía, Industria y Competitividad, Gobierno de España
CGL2016-80562-P
Ministerio de Economía, Industria y Competitividad, Gobierno de España
REMEDINAL TE-CM S2018/ EMT-4338
Regional Government of Madrid
PubMed
33271812
PubMed Central
PMC7760525
DOI
10.3390/microorganisms8121913
PII: microorganisms8121913
Knihovny.cz E-zdroje
- Klíčová slova
- beech forests, climate, epiphytic lichen, functional diversity, functional trait, latitudinal gradient, phylogenetic diversity, taxonomic diversity,
- Publikační typ
- časopisecké články MeSH
Assessing the ecological impacts of environmental change on biological communities requires knowledge of the factors driving the spatial patterns of the three diversity facets along extensive environmental gradients. We quantified the taxonomic (TD), functional (FD), and phylogenetic diversity (PD) of lichen epiphytic communities in 23 beech forests along Europe to examine their response to environmental variation (climate, habitat quality, spatial predictors) at a continental geographic scale. We selected six traits related to the climatic conditions in forest ecosystems, the water-use strategy and the nutrient uptake, and we built a phylogenetic tree based on four molecular markers. FD and climate determined TD and PD, with spatial variables also affecting PD. The three diversity facets were primarily shaped by distinct critical predictors, with the temperature diurnal range affecting FD and PD, and precipitation of the wettest month determining TD. Our results emphasize the value of FD for explaining part of TD and PD variation in lichen communities at a broad geographic scale, while highlighting that these diversity facets provide complementary information about the communities' response under changing environmental conditions. Furthermore, traits such as growth form, photobiont type, and reproductive strategy mediated the response of lichen communities to abiotic factors emerging as useful indicators of macroclimatic variations.
Department of Biology University of Florence Via La Pira 4 1 50121 Firenze Italy
Department of Botany and Zoology Faculty of Science Masaryk University 611 37 Brno Czech Republic
Department of Botany Swedish Museum of Natural History P O Box 50007 SE 104 05 Stockholm Sweden
DIFAR University of Genova Viale Cembrano 4 1 16148 Genova Italy
Institute of Biology Karl Franzens Universität Graz Holteigasse 6 8010 Graz Austria
Museum of Evolution Uppsala University Norbyvägen 16 SE 752 36 Uppsala Sweden
Zobrazit více v PubMed
Gaston K.J. Global patterns in biodiversity. Nature. 2000;405:220–227. doi: 10.1038/35012228. PubMed DOI
Mittelbach G.G. Community Ecology. 1st ed. Sinauer Associates Inc.; Sunderland, MA, USA: 2012. p. 400.
Hurtado P., Prieto M., Aragón G., Escudero A., Martínez I. Critical predictors of functional, phylogenetic and taxonomic diversity are geographically structured in lichen epiphytic communities. J. Ecol. 2019;107:2303–2316. doi: 10.1111/1365-2745.13189. DOI
Hurtado P., Matos P., Aragón G., Branquinho C., Prieto M., Martínez I. How much matching there is in functional, phylogenetic and taxonomic optima of epiphytic macrolichen communities along a European climatic gradient? Sci. Total Environ. 2020;712:136533. doi: 10.1016/j.scitotenv.2020.136533. PubMed DOI
Devictor V., Mouillot D., Meynard C., Jiguet F., Thuiller W., Mouquet N. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 2010;13:1030–1040. doi: 10.1111/j.1461-0248.2010.01493.x. PubMed DOI
Swenson N.G. The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. Am. J. Bot. 2011;98:472–480. doi: 10.3732/ajb.1000289. PubMed DOI
Díaz S., Cabido M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001;16:646–655. doi: 10.1016/S0169-5347(01)02283-2. DOI
Purschke O., Schmid B.C., Sykes M.T., Poschlod P., Michalski S.G., Durka W., Kühn I., Winter M., Prentice H.C. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. J. Ecol. 2013;101:857–866. doi: 10.1111/1365-2745.12098. DOI
Losos J.B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 2008;11:995–1003. doi: 10.1111/j.1461-0248.2008.01229.x. PubMed DOI
Cadotte M.W., Carscadden K., Mirotchnick N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 2011;48:1079–1087. doi: 10.1111/j.1365-2664.2011.02048.x. DOI
Fetzer I., Johst K., Schäwe R., Banitz T., Harms H., Chatzinotas A. The extent of functional redundancy changes as species’ roles shift in different environments. Proc. Natl. Acad. Sci. USA. 2015;112:14888–14893. doi: 10.1073/pnas.1505587112. PubMed DOI PMC
Forest F., Grenyer R., Rouget M., Davies T.J., Cowling R.M., Faith D.P., Balmford A., Manning J.C., Procheş S., van der Bank M., et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature. 2007;445:757–760. doi: 10.1038/nature05587. PubMed DOI
Tucker C.M., Cadotte M.W. Unifying measures of biodiversity: Understanding when richness and phylogenetic diversity should be congruent. Divers. Distrib. 2013;19:1–10. doi: 10.1111/ddi.12087. DOI
Webb C.O., Ackerly D.D., McPeek M.A., Donoghue M.J. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 2002;33:475–505. doi: 10.1146/annurev.ecolsys.33.010802.150448. DOI
Leão-Pires T.A., Luiz A.M., Sawaya R.J. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest. PLoS ONE. 2018;13:e0196066. doi: 10.1371/journal.pone.0196066. PubMed DOI PMC
Chun J.H., Lee C.B. Disentangling the local-scale drivers of taxonomic, phylogenetic and functional diversity in woody plant assemblages along elevational gradients in South Korea. PLoS ONE. 2017;12:e0185763. doi: 10.1371/journal.pone.0185763. PubMed DOI PMC
Safi K., Cianciaruso M.V., Loyola R.D., Brito D., Armour-Marshall K., DinizFilho J.A.F. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B. 2011;366:2536–2544. doi: 10.1098/rstb.2011.0024. PubMed DOI PMC
Green T.A., Sancho L.G., Pintado A. Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Luttge U., Beck E., Pagel M.D., editors. Plant Desiccation Tolerance. 1st ed. Springer; Berlin, Germany: 2011. p. 386.
Matos P., Pinho P., Aragón G., Martínez I., Nunes A., Soares A.M.V.M., Branquinho C. Lichen traits responding to aridity. J. Ecol. 2015;103:451–458. doi: 10.1111/1365-2745.12364. DOI
Giordani P., Brunialti G., Bacaro G., Nascimbene J. Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol. Indic. 2012;18:413–420. doi: 10.1016/j.ecolind.2011.12.006. DOI
Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:1–20. doi: 10.1038/sdata.2017.122. PubMed DOI PMC
Aragón G., Martínez I., García A. Loss of epiphytic diversity along a latitudinal gradient in Southern Europe. Sci. Total Environ. 2012;426:188–195. doi: 10.1016/j.scitotenv.2012.03.053. PubMed DOI
Nascimbene J., Marini L. Epiphytic lichen diversity along elevational gradients: Biological traits reveal a complex response to water and energy. J. Biogeogr. 2015;42:1222–1232. doi: 10.1111/jbi.12493. DOI
Prieto M., Martínez I., Aragón G., Verdú M. Phylogenetic and functional structure of lichen communities under contrasting environmental conditions. J. Veg. Sci. 2017;28:871–881. doi: 10.1111/jvs.12544. DOI
Nimis P.L., Martellos S. ITALIC—The Information System on Italian Lichens, Version 5.0. Dept. of Biology, University of Trieste; Trieste, Italy: 2017. [(accessed on 20 December 2017)]. Available online: http://dryades.units.it/italic.
Rambold G., Elix J.A., Heindl-Tenhunen B., Köhler T., Nash T.H., Neubacher D., Reichert W., Zedda L., Triebel D. LIAS light-Towards the ten thousand species milestone. MycoKeys. 2014;8:11–16. doi: 10.3897/mycokeys.8.6605. DOI
Merinero S., Hilmo O., Gauslaa Y. Size is a main driver for hydration traits in cyano- and cephalolichens of boreal rainforest canopies. Fungal Ecol. 2014;7:59–66. doi: 10.1016/j.funeco.2013.12.001. DOI
Prieto M., Wedin M. Dating the diversification of the major lineages of Ascomycota (Fungi) PLoS ONE. 2013;8:e65576. doi: 10.1371/journal.pone.0065576. PubMed DOI PMC
Burnham K.P., Anderson D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer; New York, NY, USA: 2002. p. 488.
Zuur A.F., Ieno E.N., Walker N.J., Saveliev A.A., Smith G. Mixed Effects Models and Extensions in Ecology with R. 1st ed. Springer; New York, NY, USA: 2009. p. 574.
Borcard D., Legendre P., Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73:1045–1055. doi: 10.2307/1940179. DOI
Burnham K. Multimodel Inference: Understanding AIC Relative Variable Importance Values. [(accessed on 18 November 2018)];2015 Available online: https://sites.warnercnr.colostate.edu/
Legendre P., Anderson M.J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999;69:1–24. doi: 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2. DOI
Lepš J., Smilauer P. Multivariate Analysis of Ecological Data Using CANOCO. 1st ed. Cambridge University Press; Cambridge, UK: 2003. p. 282.
Blanchet F.G., Legendre P., Borcard D. Forward selection of explanatory variables. Ecology. 2008;89:2623–2632. doi: 10.1890/07-0986.1. PubMed DOI
Weiher E., Keddy P.A. Assembly rules, null models, and trait dispersion—New questions front old patterns. Oikos. 1995;74:159–164. doi: 10.2307/3545686. DOI
Götzenberger L., de Bello F., Bråthen K.A., Davison J., Dubuis A., Guisan A., Lepš J., Lindborg R., Moora M., Pärtel M., et al. Ecological assembly rules in plant communities—Approaches, patterns and prospects. Biol. Rev. 2012;87:111–127. doi: 10.1111/j.1469-185X.2011.00187.x. PubMed DOI
Petchey O.L., Gaston K.J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 2002;5:402–411. doi: 10.1046/j.1461-0248.2002.00339.x. DOI
Clavel J., Julliard R., Devictor V. Worldwide decline of specialist species: Toward a global functional homogenization? Front. Ecol. Environ. 2011;9:222–228. doi: 10.1890/080216. DOI
Wittebolle L., Marzorati M., Clement L., Balloi A., Daffonchio D., Heylen K., De Vos P., Verstraete W., Boon N. Initial community evenness favours functionality under selective stress. Nature. 2009;458:623–626. doi: 10.1038/nature07840. PubMed DOI
Pausas J.G., Verdú M. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience. 2010;60:614–625. doi: 10.1525/bio.2010.60.8.7. DOI
Swenson N.G., Enquist B.J. Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 2007;94:451–459. doi: 10.3732/ajb.94.3.451. PubMed DOI
Cadotte M.W., Davies T.J., Regetz J., Kembel S.W., Cleland E.E., Oakley T.H. Phylogenetic diversity metrics for ecological communities: Integrating species richness, abundance and evolutionary history. Ecol. Lett. 2010;13:96–105. doi: 10.1111/j.1461-0248.2009.01405.x. PubMed DOI
Riiali A., Penttinen A., Kuusinen M. Bayesian mapping of lichens growing on trees. Biom. J. 2001;43:717–736. doi: 10.1002/1521-4036(200110)43:6<717::AID-BIMJ717>3.0.CO;2-3. DOI
Tehler A., Irestedt M. Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota) Cladistics. 2007;23:432–454. doi: 10.1111/j.1096-0031.2007.00156.x. DOI
Magri D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica) J. Biogeogr. 2008;35:450–463. doi: 10.1111/j.1365-2699.2007.01803.x. DOI
Shipley B., de Bello F., Cornelissen H., Laliberté E., Laughlin D., Reich P. Reinforcing foundation stones in trait-based plant ecology. Oecologia. 2016;180:923–931. doi: 10.1007/s00442-016-3549-x. PubMed DOI
Mackenzie T.D.B., MacDonald T.M., Dubois L.A., Campbell D.A. Seasonal changes in temperature and light drive acclimation of photosynthetic physiology and macromolecular content in Lobaria pulmonaria. Planta. 2001;214:57–66. doi: 10.1007/s004250100580. PubMed DOI