Integrated global assessment of the natural forest carbon potential
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
PubMed
37957399
PubMed Central
PMC10700142
DOI
10.1038/s41586-023-06723-z
PII: 10.1038/s41586-023-06723-z
Knihovny.cz E-resources
- MeSH
- Biodiversity MeSH
- Global Warming prevention & control MeSH
- Forests * MeSH
- Human Activities MeSH
- Environmental Restoration and Remediation trends MeSH
- Carbon Sequestration * MeSH
- Sustainable Development trends MeSH
- Carbon * analysis metabolism MeSH
- Conservation of Natural Resources * statistics & numerical data trends MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carbon * MeSH
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Agricultural High School Polytechnic Institute of Viseu IPV Viseu Portugal
AgroParisTech UMR AMAP Cirad CNRS INRA IRD Université de Montpellier Montpellier France
AMAP Univ Montpellier CIRAD CNRS INRAE IRD Montpellier France
AMAP Univ Montpellier Montpellier France
Andes to Amazon Biodiversity Program Madre de Dios Peru
Bavarian State Institute of Forestry Freising Germany
Center for Forest Ecology and Productivity Russian Academy of Sciences Moscow Russian Federation
Center for Natural Climate Solutions Conservation International Arlington VA USA
Central IT Teaching and Research University of Zürich Zürich Switzerland
Centre for Agricultural Research in Suriname Paramaribo Suriname
Centre for Conservation Science The Royal Society for the Protection of Birds Sandy UK
Centre for Forest Research Université du Québec à Montréal Montréal Quebec Canada
Centro Agricoltura Alimenti Ambiente University of Trento San Michele All'adige Italy
Centro de Ciências Biológicas e da Natureza Universidade Federal do Acre Rio Branco Brazil
Centro Multidisciplinar Universidade Federal do Acre Rio Branco Brazil
CIRAD CNRS INRAE IRD Montpellier France
Cirad UMR EcoFoG Campus Agronomique Kourou French Guiana
Cirad UPR Forêts et Sociétés University of Montpellier Montpellier France
Climate Fire and Carbon Cycle Sciences USDA Forest Service Durham NH USA
Colegio de Profesionales Forestales de Cochabamba Cochabamba Bolivia
Compensation International Progress S A Ciprogress Greenlife Bogotá Colombia
Conservation Research Institute Department of Plant Sciences University of Cambridge Cambridge UK
CTFS ForestGEO Smithsonian Tropical Research Institute Balboa Panama
Departamento de Biología Universidad de la Serena La Serena Chile
Departamento de Ciências Biológicas Universidade do Estado de Mato Grosso Nova Xavantina Brazil
Departamento de Ecologia Universidade Federal do Rio Grande do Norte Natal Brazil
Departamento de Gestión Forestal y su Medio Ambiente Universidad de Chile Santiago Chile
Department of Agricultural and Forest Sciences and Engineering University of Lleida Lleida Spain
Department of Agricultural Food Environmental and Animal Sciences University of Udine Udine Italy
Department of Agriculture Food Environment and Forest University of Firenze Florence Italy
Department of Agriculture Forestry and Bioresources Seoul National University Seoul South Korea
Department of Biological Geological and Environmental Sciences University of Bologna Bologna Italy
Department of Biology Stanford University Stanford CA USA
Department of Biology University of Florence Florence Italy
Department of Biology University of Missouri St Louis St Louis MO USA
Department of Biology University of Oxford Oxford UK
Department of Biology Washington University St Louis MO USA
Department of Biology West Virginia University Morgantown WV USA
Department of Botany Dr Harisingh Gour Vishwavidyalaya Sagar India
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Department of Ecology and Environmental Sciences Pondicherry University Puducherry India
Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
Department of Environment and Development Studies United International University Dhaka Bangladesh
Department of Environment and Geography University of York York UK
Department of Environmental Sciences Central University of Jharkhand Ranchi India
Department of Evolutionary Anthropology Duke University Durham NC USA
Department of Evolutionary Biology and Environmental Studies University of Zürich Zürich Switzerland
Department of Forest and Wood Science Stellenbosch University Stellenbosch South Africa
Department of Forest Engineering Universidade Regional de Blumenau Blumenau Brazil
Department of Forest Resources University of Minnesota St Paul MN USA
Department of Forest Science Tokyo University of Agriculture Tokyo Japan
Department of Forestry and Environment National Polytechnic Institute Yamoussoukro Côte d'Ivoire
Department of Forestry and Natural Resources Purdue University West Lafayette IN USA
Department of Game Management and Forest Protection Poznań University of Life Sciences Poznań Poland
Department of Geography Environment and Geomatics University of Guelph Guelph Ontario Canada
Department of Geomatics Forest Research Institute Sękocin Stary Poland
Department of Natural Sciences Manchester Metropolitan University Manchester UK
Department of Physical and Biological Sciences The College of Saint Rose Albany NY USA
Department of Physical and Environmental Sciences Colorado Mesa University Grand Junction CO USA
Department of Plant Biology Institute of Biology University of Campinas UNICAMP Campinas Brazil
Department of Plant Systematics University of Bayreuth Bayreuth Germany
Department of Spatial Regulation GIS and Forest Policy Institute of Forestry Belgrade Serbia
Department of Wildlife Management College of African Wildlife Management Mweka Tanzania
Department of Zoology University of Oxford Oxford UK
Division of Forest and Forest Resources Norwegian Institute of Bioeconomy Research Ås Norway
Division of Forest Resources Information Korea Forest Promotion Institute Seoul South Korea
Division of Forestry and Natural Resources West Virginia University Morgantown WV USA
Ecole de Foresterie et Ingénierie du Bois Université Nationale d'Agriculture Kétou Benin
Environmental Studies and Research Center University of Campinas UNICAMP Campinas Brazil
Faculty of Biology Białowieża Geobotanical Station University of Warsaw Białowieża Poland
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Faculty of Forestry Qingdao Agricultural University Qingdao China
Faculty of Natural Resources Management Lakehead University Thunder Bay Ontario Canada
Field Museum of Natural History Chicago IL USA
Flamingo Land Ltd Kirby Misperton UK
Forest Research Institute Malaysia Kuala Lumpur Malaysia
Forest Research Institute University of the Sunshine Coast Sippy Downs Queensland Australia
Forestry Consultant Grosseto Italy
Forestry Division Food and Agriculture Organization of the United Nations Rome Italy
Forestry School Tecnológico de Costa Rica TEC Cartago Costa Rica
Fundacion ConVida Universidad Nacional Abierta y a Distancia UNAD Medellín Colombia
Geobotany Faculty of Biology University of Freiburg Freiburg im Breisgau Germany
Geography Faculty of Environment Science and Economy University of Exeter Exeter UK
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Glick Designs LLC Hadley MA USA
Global Change Research Institute CAS Brno Czech Republic
Graduate School of Agriculture Kyoto University Kyoto Japan
Guyana Forestry Commission Georgetown French Guiana
Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
IFER Institute of Forest Ecosystem Research Jilove u Prahy Czech Republic
Independent Researcher Bad Aussee Austria
Institut Agronomique néo Calédonien Nouméa New Caledonia
Institute for Global Change Biology University of Michigan Ann Arbor MI USA
Institute for World Forestry University of Hamburg Hamburg Germany
Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
Institute of Dendrology Polish Academy of Sciences Kórnik Poland
Institute of Forestry and Engineering Estonian University of Life Sciences Tartu Estonia
Institute of Forestry Belgrade Serbia
Institute of Integrative Biology ETH Zurich Zurich Switzerland
Institute of Plant Sciences University of Bern Bern Switzerland
Instituto de Investigaciones de la Amazonía Peruana Iquitos Peru
Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
Instituto Nacional de Tecnología Agropecuaria Río Gallegos Argentina
IRET Herbier National du Gabon Libreville Gabon
Isotope Bioscience Laboratory ISOFYS Ghent University Ghent Belgium
Iwokrama International Centre for Rainforest Conservation and Development Georgetown French Guiana
Jardín Botánico de Medellín Medellín Colombia
Jardín Botánico de Missouri Oxapampa Peru
Joint Research Centre European Commission Ispra Italy
Joint Research Unit CTFC AGROTECNIO CERCA Solsona Spain
LINCGlobal Museo Nacional de Ciencias Naturales CSIC Madrid Spain
Manaaki Whenua Landcare Research Lincoln New Zealand
Museo de Historia Natural Noel Kempff Mercado Santa Cruz de la Sierra Bolivia
Museu Paraense Emílio Goeldi Coordenação de Ciências da Terra e Ecologia Belém Brazil
National Biodiversity Future Center Palermo Italy
National Center for Agro Meteorology Seoul South Korea
National Forest Centre Forest Research Institute Zvolen Zvolen Slovakia
National Institute of Amazonian Research Manaus Brazil
Natural Resources Institute Finland Joensuu Finland
Natural Science Department Universidade Regional de Blumenau Blumenau Brazil
Naturalis Biodiversity Center Leiden The Netherlands
Negaunee Integrative Research Center Field Museum of Natural History Chicago IL USA
Nicholas School of the Environment Duke University Durham NC USA
Peoples' Friendship University of Russia Moscow Russian Federation
Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands
Polish State Forests Coordination Center for Environmental Projects Warsaw Poland
Pontificia Universidad Católica del Ecuador Quito Ecuador
Proceedings of the National Academy of Sciences Washington DC USA
Programa de Ciencias del Agro y el Mar Herbario Universitario UNELLEZ Guanare Portuguesa Venezuela
Quantitative Biodiversity Dynamics Department of Biology Utrecht University Utrecht The Netherlands
Remote Sensing Laboratories Department of Geography University of Zürich Zürich Switzerland
Research and Innovation Centre Fondazione Edmund Mach San Michele All'adige Italy
Research Institute for Agriculture and Life Sciences Seoul National University Seoul South Korea
Rhino and Forest Fund e 5 Kehl Germany
Royal Botanic Garden Edinburgh Edinburgh UK
School of Biological and Behavioural Sciences Queen Mary University of London London UK
School of Biological Sciences University of Bristol Bristol UK
School of Forestry and Environmental Studies Yale University New Haven CT USA
School of Geography University of Leeds Leeds UK
School of Social Sciences Western Sydney University Penrith New South Wales Australia
Section for Ecoinformatics and Biodiversity Department of Biology Aarhus University Aarhus Denmark
Siberian Federal University Krasnoyarsk Russian Federation
Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany
Silviculture Research Institute Vietnamese Academy of Forest Sciences Hanoi Vietnam
Society for Ecological Restoration Washington DC USA
Ștefan cel Mare University of Suceava Suceava Romania
Sustainable Forest Management Research Institute University Valladolid Valladolid Spain
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
TERRA Teaching and Research Centre Gembloux Agro Bio Tech University of Liege Liege Belgium
The Nature Conservancy Boulder CO USA
The Santa Fe Institute Santa Fe NM USA
Theoretical Ecology Unit African Institute for Mathematical Sciences Cape Town South Africa
Tropenbos International Wageningen The Netherlands
Tropical Biodiversity Section MUSE Museo delle Scienze Trento Italy
UFR Biosciences University Félix Houphouët Boigny Abidjan Côte d'Ivoire
Universidad del Tolima Ibagué Colombia
Universidad Estatal Amazónica Puyo Ecuador
Universidad Nacional de la Amazonía Peruana Iquitos Peru
Universidad Nacional de San Antonio Abad del Cusco Cusco Peru
Université de Lorraine AgroParisTech INRAE Silva Nancy France
Vicerrectoría de Investigación y Postgrado Universidad de La Frontera Temuco Chile
Wageningen University and Research Wageningen The Netherlands
See more in PubMed
Pan Y, Birdsey RA, Phillips OL, Jackson RB. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013;44:593–622. doi: 10.1146/annurev-ecolsys-110512-135914. DOI
Walker W, et al. The global potential for increased storage of carbon on land. Proc. Natl Acad. Sci. 2022;119:e2111312119. doi: 10.1073/pnas.2111312119. PubMed DOI PMC
Bastin JF, et al. The global tree restoration potential. Science. 2019;364:76–79. doi: 10.1126/science.aax0848. PubMed DOI
Erb K-H, et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature. 2018;553:73–76. doi: 10.1038/nature25138. PubMed DOI PMC
Roebroek CTJ, Duveiller G, Seneviratne SI, Davin EL, Cescatt A. Releasing global forests from human management: How much more carbon could be stored? Science. 2023;380:749–753. doi: 10.1126/science.add5878. PubMed DOI
Liang J, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354:aaf8957. doi: 10.1126/science.aaf8957. PubMed DOI
Araza A, et al. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sens. Environ. 2022;272:112917. doi: 10.1016/j.rse.2022.112917. DOI
Spawn SA, Sullivan CC, Lark TJ, Gibbs HK. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data. 2020;7:112. doi: 10.1038/s41597-020-0444-4. PubMed DOI PMC
Lewis SL, Wheeler CE, Mitchard ETA, Koch A. Restoring natural forests is the best way to remove atmospheric carbon. Nature. 2019;568:25–28. doi: 10.1038/d41586-019-01026-8. PubMed DOI
Pecl GT, et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science. 2017;355:eaai9214. doi: 10.1126/science.aai9214. PubMed DOI
Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (Cambridge Univ. Press, 2018).
Food and Agriculture Organization of the United Nations (FAO). In Brief to The State of the World’s Forests 2022. Forest Pathways for Green Recovery and Building Inclusive, Resilient and Sustainable Economies (FAO, 2022).
Crowther TW, et al. Mapping tree density at a global scale. Nature. 2015;525:201–205. doi: 10.1038/nature14967. PubMed DOI
Olagunju TE. Impacts of human-induced deforestation, forest degradation and fragmentation on food security. N. Y. Sci. J. 2015;8:4–16.
Friedlingstein P, et al. Global carbon budget 2020. Earth Syst. Sci. Data. 2020;12:3269–3340. doi: 10.5194/essd-12-3269-2020. DOI
Mrema EM, et al. Ten years to restore a planet. One Earth. 2020;3:647–652. doi: 10.1016/j.oneear.2020.11.015. DOI
Convention on Biological Diversity (CBD). Kunming-Montreal Global Biodiversity Framework (UN Environment Programme, 2022).
26th UN Climate Change Conference of the Parties (COP26). Glasgow Leaders’ Declaration on Forests and Land Use (United Nations Climate Change, 2021).
Pan Y, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–993. doi: 10.1126/science.1201609. PubMed DOI
Lewis SL, Mitchard ETA, Prentice C, Maslin M, Poulter B. Comment on “The global tree restoration potential”. Science. 2019;366:eaaz0388. doi: 10.1126/science.aaz0388. PubMed DOI
Veldman JW, et al. Comment on “The global tree restoration potential”. Science. 2019;366:eaay7976. doi: 10.1126/science.aay7976. PubMed DOI
Scott JM, et al. Nature reserves: do they capture the full range of America’s biological diversity? Ecol. Appl. 2001;11:999–1007. doi: 10.1890/1051-0761(2001)011[0999:NRDTCT]2.0.CO;2. DOI
Sanderman J, Hengl T, Fiske GJ. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. 2017;114:9575–9580. doi: 10.1073/pnas.1706103114. PubMed DOI PMC
Ma H, et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 2021;5:1110–1122. doi: 10.1038/s41559-021-01485-1. PubMed DOI
Avitabile V, et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 2016;22:1406–1420. doi: 10.1111/gcb.13139. PubMed DOI
Potapov P, et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 2017;3:e1600821. doi: 10.1126/sciadv.1600821. PubMed DOI PMC
Skytt T, Englund G, Jonsson B. Climate mitigation forestry—temporal trade-offs. Environ. Res. Lett. 2021;16:114037. doi: 10.1088/1748-9326/ac30fa. DOI
Du Z, et al. A global map of planting years of plantations. Sci. Data. 2022;9:141. doi: 10.1038/s41597-022-01260-2. PubMed DOI PMC
Xu L, et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 2021;7:eabe9829. doi: 10.1126/sciadv.abe9829. PubMed DOI PMC
Portmann R, et al. Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation. Nat. Commun. 2022;13:5569. doi: 10.1038/s41467-022-33279-9. PubMed DOI PMC
Rohatyn S, Yakir D, Rotenberg E, Carmel Y. Limited climate change mitigation potential through forestation of the vast dryland regions. Science. 2022;377:1436–1439. doi: 10.1126/science.abm9684. PubMed DOI
Alkama R, Cescatti A. Biophysical climate impacts of recent changes in global forest cover. Science. 2016;351:600–604. doi: 10.1126/science.aac8083. PubMed DOI
Nabuurs, G.-J. et al. in IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 7 (Cambridge Univ. Press, 2023).
Cassidy ES, West PC, Gerber JS, Foley JA. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 2013;8:034015. doi: 10.1088/1748-9326/8/3/034015. DOI
Schiermeir Q. Eat less meat: UN climate-change panel tackles diets. Nature. 2019;572:291–292. doi: 10.1038/d41586-019-02409-7. PubMed DOI
Hayek MN, Harwatt H, Ripple WJ, Mueller ND. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 2021;4:21–24. doi: 10.1038/s41893-020-00603-4. DOI
Dubayah, R. O. et al. GEDI L4A Footprint Level Aboveground Biomass Density, Version 1. 10.3334/ORNLDAAC/1907 (ORNL DAAC, 2021).
de Lima RAF, et al. Making forest data fair and open. Nat. Ecol. Evol. 2022;6:656–658. doi: 10.1038/s41559-022-01738-7. PubMed DOI
Liang J, Gamarra JGP. The importance of sharing global forest data in a world of crises. Sci. Data. 2020;7:424. doi: 10.1038/s41597-020-00766-x. PubMed DOI PMC
Staver AC, Archibald S, Levin SA. The global extent and determinants of savanna and forest as alternative biome states. Science. 2011;334:230–232. doi: 10.1126/science.1210465. PubMed DOI
McRoberts RE, et al. Local validation of global biomass maps. Int. J. Appl. Earth Obs. Geoinf. 2019;83:101931.
Austin KG, et al. The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nat. Commun. 2020;11:5946. doi: 10.1038/s41467-020-19578-z. PubMed DOI PMC
Cook-Patton SC, et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature. 2020;585:545–550. doi: 10.1038/s41586-020-2686-x. PubMed DOI
Aleixo I, et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change. 2019;9:384–388. doi: 10.1038/s41558-019-0458-0. DOI
Pellegrini AFA, et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature. 2018;553:194–198. doi: 10.1038/nature24668. PubMed DOI
Zhu Z, et al. Greening of the Earth and its drivers. Nat. Clim. Change. 2016;6:791–795. doi: 10.1038/nclimate3004. DOI
Wiebel, H., Moss, K. & Neagle, E. From Pledges to Action: What’s Next for COP26 Corporate Commitments. World Resources Institutehttps://www.wri.org/insights/pledges-action-whats-next-cop26-corporate-commitments?auHash=tpyB7H-JVwZWeGWd-_lP2K9Xs0ZcTfHmlcAFGllQ5DM (2021).
26th UN Climate Change Conference of the Parties (COP26). Financial Sector Commitment Letter on Eliminating Commodity-driven Deforestation (United Nations Climate Change, 2021).
Veryard R, et al. Positive effects of tree diversity on tropical forest restoration in a field-scale experiment. Sci. Adv. 2023;9:eadf0938. doi: 10.1126/sciadv.adf0938. PubMed DOI PMC
Philipson CD, et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science. 2020;369:838–841. doi: 10.1126/science.aay4490. PubMed DOI
Lambin EF, Meyfroidt P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA. 2011;108:3465–3472. doi: 10.1073/pnas.1100480108. PubMed DOI PMC
Crowther TW, et al. Restor: transparency and connectivity for the global environmental movement. One Earth. 2022;5:476–481. doi: 10.1016/j.oneear.2022.04.003. DOI
Roy, J., Mooney, H. A. & Saugier, B. Terrestrial Global Productivity (Elsevier, 2001).
Siegenthaler U, Sarmiento JL. Atmospheric carbon dioxide and the ocean. Nature. 1993;365:119–125. doi: 10.1038/365119a0. DOI
Bazilevich NI, Rodin LY, Rozov NN. Geographical aspects of biological productivity. Sov. Geogr. 1971;12:293–317. doi: 10.1080/00385417.1971.10770248. DOI
Olson, J. S., Watts, J. A. & Allison, L. J. Carbon in Live Vegetation of Major World Ecosystems (Oak Ridge National Laboratory, 1983).
Ruesch, A. & Gibbs, H. K. New IPCC Tier-1 global biomass carbon map for the year 2000 (U.S. Department of Energy, 2008).
Ajtay, G. L. Terrestrial primary production and phytomass. Glob. Carbon cycle 129–181 (1979).
Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2010 (FAO, 2010).
Adams JM, Faure H, Faure-Denard L, McGlade JM, Woodward FI. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature. 1990;348:711–714. doi: 10.1038/348711a0. DOI
West PC, et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. 2010;107:19645–19648. doi: 10.1073/pnas.1011078107. PubMed DOI PMC
Kaplan JO, et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene. 2011;21:775–791. doi: 10.1177/0959683610386983. DOI
Shevliakova E, et al. Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Glob. Biogeochem. Cycles. 2009;23:GB2022. doi: 10.1029/2007GB003176. DOI
Hurtt GC, et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change. 2011;109:117–161. doi: 10.1007/s10584-011-0153-2. DOI
Krinner G, et al. A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system. Glob. Biogeochem. Cycles. 2005;19:GB1015. doi: 10.1029/2003GB002199. DOI
Sitch S, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 2003;9:161–185. doi: 10.1046/j.1365-2486.2003.00569.x. DOI
Prentice IC, Harrison SP, Bartlein PJ. Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol. 2011;189:988–998. doi: 10.1111/j.1469-8137.2010.03620.x. PubMed DOI
Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013;49:764–766. doi: 10.1016/j.jesp.2013.03.013. DOI
Henry M, et al. GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. Iforest. 2013;6:326–330. doi: 10.3832/ifor0901-006. DOI
Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA. National-scale biomass estimators for United States tree species. For. Sci. 2003;49:12–35.
Olson DM, et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience. 2001;51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Chave J, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014;20:3177–3190. doi: 10.1111/gcb.12629. PubMed DOI
Réjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B. BIOMASS: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 2017;8:1163–1167. doi: 10.1111/2041-210X.12753. DOI
Chave J, et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009;12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x. PubMed DOI
Falster DS, et al. BAAD: a Biomass And Allometry Database for woody plants. Ecology. 2015;96:1445. doi: 10.1890/14-1889.1. DOI
Boyle B, et al. The Taxonomic Name Resolution Service: an online tool for automated standardization of plant names. BMC Bioinform. 2013;14:16. doi: 10.1186/1471-2105-14-16. PubMed DOI PMC
Martin AR, Doraisami M, Thomas SC. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 2018;11:915–920. doi: 10.1038/s41561-018-0246-x. DOI
Keith H, Mackey BG, Lindenmayer DB. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl Acad. Sci. 2009;106:11635–11640. doi: 10.1073/pnas.0901970106. PubMed DOI PMC
Li S, et al. Deep learning enables image-based tree counting, crown segmentation, and height prediction at national scale. PNAS Nexus. 2023;2:pgad076. doi: 10.1093/pnasnexus/pgad076. PubMed DOI PMC
Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. PubMed DOI PMC
Amatulli G, et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data. 2018;5:180040. doi: 10.1038/sdata.2018.40. PubMed DOI PMC
Wilson AM, Jetz W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 2016;14:e1002415. doi: 10.1371/journal.pbio.1002415. PubMed DOI PMC
Fan Y, Li H, Miguez-Macho G. Global patterns of groundwater table depth. Science. 2013;339:940–943. doi: 10.1126/science.1229881. PubMed DOI
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Shangguan W, Hengl T, de Jesus JM, Yuan H, Dai Y. Mapping the global depth to bedrock for land surface modeling. J. Adv. Model. Earth Syst. 2017;9:65–88. doi: 10.1002/2016MS000686. DOI
Trabucco, A. & Zomer, R. J. Global Soil Water Balance Geospatial Database. (CGIAR Consortium for Spatial Information, 2010); https://csidotinfo.wordpress.com/data/global-high-resolution-soil-water-balance/.
Zomer RJ, Trabucco A, Bossio DA, Verchot LV. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008;126:67–80. doi: 10.1016/j.agee.2008.01.014. DOI
Tuanmu M-N, Jetz W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 2014;23:1031–1045. doi: 10.1111/geb.12182. DOI
Klein Goldewijk K, Beusen A, Janssen P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene. 2010;20:565–573. doi: 10.1177/0959683609356587. DOI
Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2011;20:73–86. doi: 10.1111/j.1466-8238.2010.00587.x. DOI
Kennedy CM, Oakleaf JR, Theobald DM, Baruch-Mordo S, Kiesecker J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 2019;25:811–826. doi: 10.1111/gcb.14549. PubMed DOI
United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), International Union for Conservation of Nature (IUCN) World Commission on Protected Areas (WCPA). Protected Planet: the World Database on Protected Areas (WDPA). https://www.protectedplanet.net/en (2011).
United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), International Union for Conservation of Nature (IUCN) World Commission on Protected Areas (WCPA). Protected Planet: the World Database on Protected Areas (WDPA) https://www.protectedplanet.net/en (2018).
Jones KR, et al. One-third of global protected land is under intense human pressure. Science. 2018;360:788–791. doi: 10.1126/science.aap9565. PubMed DOI
Hansen MC, et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–853. doi: 10.1126/science.1244693. PubMed DOI
Gorelick N, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017;202:18–27. doi: 10.1016/j.rse.2017.06.031. DOI
Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A. Conditional variable importance for random forests. BMC Bioinform. 2008;9:307. doi: 10.1186/1471-2105-9-307. PubMed DOI PMC
Ploton P, et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020;11:4540. doi: 10.1038/s41467-020-18321-y. PubMed DOI PMC
Sagi O, Rokach L. Ensemble learning: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018;8:e1249. doi: 10.1002/widm.1249. DOI
van den Hoogen J, et al. Soil nematode abundance and functional group composition at a global scale. Nature. 2019;572:194–198. doi: 10.1038/s41586-019-1418-6. PubMed DOI
Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v3. NERC EDS Centre for Environmental Data Analysis. 10.5285/5f331c418e9f4935b8eb1b836f8a91b8 (2021).
Santoro, M. GlobBiomass—global datasets of forest biomass. PANGAEA. 10.1594/PANGAEA.894711 (2018).
Bouvet A, et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 2018;206:156–173. doi: 10.1016/j.rse.2017.12.030. DOI
Grace J, Jose JS, Meir P, Miranda HS, Montes RA. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 2006;33:387–400. doi: 10.1111/j.1365-2699.2005.01448.x. DOI
Sandvik, B. World Borders Dataset. Thematic Mapping API. https://thematicmapping.org/downloads/world_borders.php (2009).
Tuanmu M-N, Jetz W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 2015;24:1329–1339. doi: 10.1111/geb.12365. DOI
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).