Exploring RF Magnetron Sputtering Growth Composite Thin Film BiFeO3-Bi2Fe4O9 on C-Plane Al2O3 Substrate

. 2023 Oct 31 ; 16 (21) : . [epub] 20231031

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37959586

Grantová podpora
project number 23-22-00130 Russian Science Foundation grant

Nanocomposite films of BiFeO3-Bi2Fe4O9 were fabricated on a sapphire substrate Al2O3 using the method of gas discharge high-frequency cathodic sputtering of a ceramic target with a stoichiometric composition in an oxygen atmosphere. The results of the film analysis using X-ray structural analysis, Raman scattering, XPS, and atomic force microscopy are presented. The lattice parameters, surface topography, chemical composition of the films, concentration, and average sizes of the crystallites for each phase were determined. It was shown that the ratio of the BiFeO3 to Bi2Fe4O9 phases in the obtained film is approximately 1:2. The sizes of the crystallites range from 15 to 17 nm. The optical and magnetic properties of the nanocomposite layers were studied, and the band gap width and magnetization hysteresis characteristic of ferromagnetic behavior were observed. The band gap width was found to be 1.9 eV for the indirect and 2.6 eV for the direct interband transitions. The magnetic properties are characterized by a hysteresis loop resembling a "wasp-waist" shape, indicating the presence of magnetic anisotropy.

Zobrazit více v PubMed

Catalan G., Scott J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009;21:2463–2485. doi: 10.1002/adma.200802849. DOI

Ramazanov S., Sobola D., Gajiev G., Orudzhev F., Kaspar P., Gummetov A. Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. Nanomaterials. 2022;13:139. doi: 10.3390/nano13010139. PubMed DOI PMC

Sando D., Agbelele A., Rahmedov D., Liu J., Rovillain P., Toulouse C., Infante I.C., Pyatakov A.P., Fusil S., Jacquet E., et al. Crafting the Magnonic and Spintronic Response of BiFeO3 Films by Epitaxial Strain. Nat. Mater. 2013;12:641–646. doi: 10.1038/nmat3629. PubMed DOI

Lee J.H., Fina I., Marti X., Kim Y.H., Hesse D., Alexe M., Lee J.H., Fina I., Kim Y.H., Hesse D., et al. Spintronic Functionality of BiFeO3 Domain Walls. Adv. Mater. 2014;26:7078–7082. doi: 10.1002/adma.201402558. PubMed DOI

Smolenskii G.A., Yudin V.M., Sher E. Weak ferromagnetism of some BiFeO3-Pb(Fe0.5Nb0.5)O3 perovskites. Sov. Phys. Solid State. 1965;6:2936.

Sosnowska I., Peterlin-Neumaier T., Steichele E. Spiral Magnetic Ordering in Bismuth Ferrite. J. Phys. C Solid State Phys. 1982;15:4835–4846. doi: 10.1088/0022-3719/15/23/020. DOI

Maity T., Goswami S., Bhattacharya D., Roy S. Superspin Glass Mediated Giant Spontaneous Exchange Bias in a Nanocomposite of BiFeO3-Bi2Fe4O9. Phys. Rev. Lett. 2013;110:107201. doi: 10.1103/PhysRevLett.110.107201. PubMed DOI

Maity T., Roy S. Asymmetric Ascending and Descending Loop Shift Exchange Bias in Bi2Fe4O9-BiFeO3 Nanocomposites. J. Magn. Magn. Mater. 2020;494:165783. doi: 10.1016/j.jmmm.2019.165783. DOI

Pleshakov I.V., Volkov M.P., Lomanova N.A., Kuz’min Y.I., Gusarov V.V. Magnetic Characteristics of a Nanocomposite Based on Bismuth Ferrites. Tech. Phys. Lett. 2020;46:1072–1075. doi: 10.1134/S1063785020110115. DOI

Park Y.A., Song K.M., Lee K.D., Won C.J., Hur N. Effect of Antiferromagnetic Order on the Dielectric Properties of Bi2Fe4O9. Appl. Phys. Lett. 2010;96:338992. doi: 10.1063/1.3339880. DOI

Dutta D.P., Sudakar C., Mocherla P.S.V., Mandal B.P., Jayakumar O.D., Tyagi A.K. Enhanced Magnetic and Ferroelectric Properties in Scandium Doped Nano Bi2Fe4O9. Mater. Chem. Phys. 2012;135:998–1004. doi: 10.1016/j.matchemphys.2012.06.005. DOI

Kirsch A., Murshed M.M., Litterst F.J., Gesing T.M. Structural, Spectroscopic, and Thermoanalytic Studies on Bi2Fe4O9: Tunable Properties Driven by Nano- and Poly-Crystalline States. J. Phys. Chem. C. 2019;123:3161–3171. doi: 10.1021/acs.jpcc.8b09698. DOI

Zhao J., Liu T., Xu Y., He Y., Chen W. Synthesis and Characterization of Bi2Fe4O9 Powders. Mater. Chem. Phys. 2011;128:388–391. doi: 10.1016/j.matchemphys.2011.03.011. DOI

Alvarez G., Contreras J., Conde-Gallardo A., Montiel H., Zamorano R. Detection of Para–Antiferromagnetic Transition in Bi2Fe4O9 Powders by Means of Microwave Absorption Measurements. J. Magn. Magn. Mater. 2013;348:17–21. doi: 10.1016/j.jmmm.2013.08.014. DOI

Papaefthymiou G.C., Viescas A.J., Le Breton J.M., Chiron H., Juraszek J., Park T.J., Wong S.S. Magnetic and Mössbauer Characterization of the Magnetic Properties of Single-Crystalline Sub-Micron Sized Bi2Fe4O9 Cubes. Curr. Appl. Phys. 2015;15:417–422. doi: 10.1016/j.cap.2014.11.008. DOI

Tian Z.M., Yuan S.L., Wang X.L., Zheng X.F., Yin S.Y., Wang C.H., Liu L. Size Effect on Magnetic and Ferroelectric Properties in Bi2Fe4O9 Multiferroic Ceramics. J. Appl. Phys. 2009;106:343219. doi: 10.1063/1.3259392. DOI

Zvezdin A.K., Pyatakov A.P. Phase transitions and the giant magnetoelectric effect in multiferroics. Phys.-Uspekhi. 2004;47:416. doi: 10.1070/PU2004v047n04ABEH001752. DOI

Yuan G.L., Or S.W., Chan H.L.W., Liu Z.G. Reduced Ferroelectric Coercivity in Multiferroic Bi0.825Nd0.175FeO3 Thin Film. J. Appl. Phys. 2007;101:818138. doi: 10.1063/1.2423228. DOI

Zhang T., Shen Y., Qiu Y., Liu Y., Xiong R., Shi J., Wei J. Facial Synthesis and Photoreaction Mechanism of BiFeO3/Bi2Fe4O9 Heterojunction Nanofibers. ACS Sustain. Chem. Eng. 2017;5:4630–4636. doi: 10.1021/acssuschemeng.6b03138. DOI

Wang L., Steven L., Jacques P.D. Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C. University of Texas M. D. Anderson Cancer Center; Houston, TX, USA: 1992.

Giraev K.M., Ashurbekov N.A., Magomedov M.A., Murtazaeva A.A., Medzhidov R.T. The Effect of Pathological Processes on Absorption and Scattering Spectra of Samples of Bile and Pancreatic Juice. Opt. Spectrosc. Engl. Transl. Opt. I Spektrosk. 2015;119:162–170. doi: 10.1134/S0030400X15070097. DOI

Orudzhev F., Alikhanov N., Amirov A., Rabadanova A., Selimov D., Shuaibov A., Gulakhmedov R., Abdurakhmanov M., Magomedova A., Ramazanov S., et al. Porous Hybrid PVDF/BiFeO3 Smart Composite with Magnetic, Piezophotocatalytic, and Light-Emission Properties. Catalysts. 2023;13:874. doi: 10.3390/catal13050874. DOI

Huo Y., Jin Y., Zhang Y. Citric Acid Assisted Solvothermal Synthesis of BiFeO3 Microspheres with High Visible-Light Photocatalytic Activity. J. Mol. Catal. A Chem. 2010;331:15–20. doi: 10.1016/j.molcata.2010.08.009. DOI

Selbach S.M., Tybell T., Einarsrud M.A., Grande T. Size-Dependent Properties of Multiferroic BiFeO3 Nanoparticles. Chem. Mater. 2007;19:6478–6484. doi: 10.1021/cm071827w. DOI

Li S., Lin Y.H., Zhang B.P., Wang Y., Nan C.W. Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors. J. Phys. Chem. C. 2010;114:2903–2908. doi: 10.1021/jp910401u. DOI

Dai Z., Akishige Y. Electrical Properties of Multiferroic BiFeO3 Ceramics Synthesized by Spark Plasma Sintering. J. Phys. D Appl. Phys. 2010;43:445403. doi: 10.1088/0022-3727/43/44/445403. DOI

Fukumura H., Harima H., Kisoda K., Tamada M., Noguchi Y., Miyayama M. Raman Scattering Study of Multiferroic BiFeO3 Single Crystal. J. Magn. Magn. Mater. 2007;310:e367–e369. doi: 10.1016/j.jmmm.2006.10.282. PubMed DOI

Bielecki J., Svedlindh P., Tibebu D.T., Cai S., Eriksson S.G., Börjesson L., Knee C.S. Structural and Magnetic Properties of Isovalently Substituted Multiferroic BiFeO3: Insights from Raman Spectroscopy. Phys. Rev. B Condens. Matter. Mater. Phys. 2012;86:184422. doi: 10.1103/PhysRevB.86.184422. DOI

Iliev M.N., Litvinchuk A.P., Hadjiev V.G., Gospodinov M.M., Skumryev V., Ressouche E. Phonon and Magnon Scattering of Antiferromagnetic Bi2Fe4O9. Phys. Rev. B Condens. Matter. Mater. Phys. 2010;81:024302. doi: 10.1103/PhysRevB.81.024302. DOI

Mohapatra S.R., Swain A., Yadav C.S., Kaushik S.D., Singh A.K. Unequivocal Evidence of Enhanced Magnetodielectric Coupling in Gd3+ Substituted Multiferroic Bi2Fe4O9. RSC Adv. 2016;6:112282–112291. doi: 10.1039/C6RA24525K. DOI

Alikhanov N.M.R., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-Dependent Structural Parameters, Optical, and Magnetic Properties of Facile Synthesized Pure-Phase BiFeO3. J. Mater. Sci. Mater. Electron. 2021;32:13323–13335. doi: 10.1007/s10854-021-05911-9. DOI

Friedrich A., Biehler J., Morgenroth W., Wiehl L., Winkler B., Hanfland M., Tolkiehn M., Burianek M., Mühlberg M. High-Pressure Phase Transition of Bi2Fe4O9. J. Phys. Condens. Matter. 2012;24:145401. doi: 10.1088/0953-8984/24/14/145401. PubMed DOI

Zeljković S., Ivas T., Maruyama H., Nino J.C. Structural, Magnetic and Optical Properties of BiFeO3 Synthesized by the Solvent-Deficient Method. Ceram. Int. 2019;45:19793–19798. doi: 10.1016/j.ceramint.2019.06.234. DOI

Tu C.S., Chen P.Y., Jou Y.S., Chen C.S., Chien R.R., Schmidt V.H., Haw S.C. Polarization-Modulated Photovoltaic Conversion in Polycrystalline Bismuth Ferrite. Acta Mater. 2019;176:1–10. doi: 10.1016/j.actamat.2019.06.046. DOI

Wang Y., Daboczi M., Zhang M., Briscoe J., Kim J.S., Yan H., Dunn S. Origin of the switchable photocurrent direction in BiFeO3 thin films. Mater. Horiz. 2023 doi: 10.1039/D3MH01510F. PubMed DOI

Zeng T., Liu Z., Huang G., Hou J., Zhang G. Visible-light photovoltaic effect in multiferroic Bi2Fe4O9 thin film. Mater. Lett. 2022;309:131411. doi: 10.1016/j.matlet.2021.131411. DOI

Ameer S., Jindal K., Tomar M., Jha P.K., Gupta V. Growth of highly oriented orthorhombic phase of Bi2Fe4O9 thin films by pulsed laser deposition. Mater. Today Proc. 2021;47:1646–1650. doi: 10.1016/j.matpr.2021.04.543. DOI

Liu Y., Zuo R. Morphology and optical absorption of Bi2Fe4O9 crystals via mineralizer-assisted hydrothermal synthesis. Particuology. 2013;11:581–587. doi: 10.1016/j.partic.2012.11.002. DOI

Psathas P., Georgiou Y., Moularas C., Armatas G.S., Deligiannakis Y. Controlled-Phase Synthesis of Bi2Fe4O9 & BiFeO3 by Flame Spray Pyrolysis and their evaluation as non-noble metal catalysts for efficient reduction of 4-nitrophenol. Powder Technol. 2020;368:268–277. doi: 10.1016/j.powtec.2020.04.059. DOI

Zhong Y., Ma Y., Guo Q., Liu J., Wang Y., Yang M., Xia H. Controllable synthesis of TiO2@Fe2O3 core-shell nanotube arrays with double-wall coating as superb lithium-ion battery anodes. Sci. Rep. 2017;7:40927. doi: 10.1038/srep40927. PubMed DOI PMC

Gomez-Iriarte G.A., Pentón-Madrigal A., de Oliveira L.A.S., Sinnecker J.P. XPS study in BiFeO3 surface modified by argon etching. Materials. 2022;15:4285. doi: 10.3390/ma15124285. PubMed DOI PMC

Zhang C., Wang S.Y., Liu W.F., Xu X.L., Li X., Zhang H., Gao J., Li D.J. Room temperature exchange bias in multiferroic BiFeO3 nano-and microcrystals with antiferromagnetic core and two-dimensional diluted antiferromagnetic shell. J. Nanopart. Res. 2017;19:182. doi: 10.1007/s11051-017-3880-0. DOI

Bharathkumar S., Sakar M., Balakumar S. Versatility of electrospinning in the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic and photocatalytic activities. Phys. Chem. Chem. Phys. 2015;17:17745–17754. doi: 10.1039/C5CP01640A. PubMed DOI

Xue X., Tan G., Liu W., Ren H. Structural, electrical and magnetic properties of (Bi0.9RE0.1)(Fe0.97Co0.03)O3 (RE = Nd and Gd) thin films. Mater. Res. Bull. 2014;52:143–150. doi: 10.1016/j.materresbull.2014.01.015. DOI

Quan Z., Hu H., Xu S., Liu W., Fang G., Li M., Zhao X. Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO3 thin films prepared by sol–gel process. J. Sol-Gel Sci. Technol. 2008;48:261–266. doi: 10.1007/s10971-008-1825-x. DOI

Wang J.B.N.J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Viehland D., Vaithyanathan V., Schlom D.G., Waghmare U.V., et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299:1719–1722. doi: 10.1126/science.1080615. PubMed DOI

Tamilselvan A., Balakumar S., Sakar M., Nayek C., Murugavel P., Kumar K.S. Role of oxygen vacancy and Fe–O–Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles. Dalton Trans. 2014;43:5731–5738. doi: 10.1039/C3DT52260A. PubMed DOI

Paswan S.K., Kumari S., Kar M., Singh A., Pathak H., Borah J.P., Kumar L. Optimization of Structure-Property Relationships in Nickel Ferrite Nanoparticles Annealed at Different Temperature. J. Phys. Chem. Solids. 2021;151:109928. doi: 10.1016/j.jpcs.2020.109928. DOI

Bennett L.H., Della Torre E. Analysis of Wasp-Waist Hysteresis Loops. J. Appl. Phys. 2005;97:984370. doi: 10.1063/1.1846171. DOI

Gupta S., Tomar M., Gupta V. Magnetic Hysteresis of Cerium Doped Bismuth Ferrite Thin Films. J. Magn. Magn. Mater. 2015;378:333–339. doi: 10.1016/j.jmmm.2014.11.062. DOI

Roberts A.P., Cui Y., Verosub K.L. Wasp-Waisted Hysteresis Loops: Mineral Magnetic Characteristics and Discrimination of Components in Mixed Magnetic Systems. J. Geophys. Res. Solid Earth. 1995;100:17909–17924. doi: 10.1029/95JB00672. DOI

Tauxe L., Mullender T.A.T., Pick T. Potbellies, Wasp-Waists, and Superparamagnetism in Magnetic Hysteresis. J. Geophys. Res. Solid Earth. 1996;101:571–583. doi: 10.1029/95JB03041. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...