REDACS: Regional emergency-driven adaptive cluster sampling for effective COVID-19 management
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 HL089778
NHLBI NIH HHS - United States
UL1 TR003142
NCATS NIH HHS - United States
PubMed
37982071
PubMed Central
PMC10655945
DOI
10.1080/07362994.2022.2033126
Knihovny.cz E-zdroje
- Klíčová slova
- ACS, REDACS, antigen test validation, prevalence, sampling,
- Publikační typ
- časopisecké články MeSH
As COVID-19 is spreading, national agencies need to monitor and track several metrics. Since we do not have perfect testing programs on the hand, one needs to develop an advanced sampling strategies for prevalence study, control and management. Here we introduce REDACS: Regional emergency-driven adaptive cluster sampling for effective COVID-19 management and control and justify its usage for COVID-19. We show its advantages over classical massive individual testing sampling plans. We also point out how regional and spatial heterogeneity underlines proper sampling. Fundamental importance of adaptive control parameters from emergency health stations and medical frontline is outlined. Since the Northern hemisphere entered Autumn and Winter season (this paper was originally submitted in November 2020), practical illustration from spatial heterogeneity of Chile (Southern hemisphere, which already experienced COVID-19 winter outbreak peak) is underlying the importance of proper regional heterogeneity of sampling plan. We explain the regional heterogeneity by microbiological backgrounds and link it to behavior of Lyapunov exponents. We also discuss screening by antigen tests from the perspective of "on the fly" biomarker validation, i.e., during the screening.
Biostatistics Program School of Public Health University of Chile Santiago Chile
Departamento de Estomatología Facultad de Ciencias de la Salud Universidad de Talca Chile
Department of Biomedical Data Science School of Medicine Stanford University Stanford California USA
Emeritus Prof STU Senior Konzulting ESK
Facultad de Ingeniería Universidad Andrés Bello Valparaíso Chile
Institute of Epidemiology Faculty of Medicine in Bratislava Comenius University Slovak Republic
Institute of Mathematics Faculty of Science P J Šafárik University Košice Slovakia
Instituto de Estadística Universidad de Valparaíso Valparaíso Chile
Instituto de Fomento Pesquero Chile
Zobrazit více v PubMed
Swaminathan A, Subramanian S (2020). Reflections on designing population surveys for COVID-19 infection and prevalence. GeroScience. 42(6):1445–1448. DOI: 10.1007/s11357-020-00253-6. PubMed DOI PMC
Stehlík M, Kisel’ák J, Dinamarca MA, Li Y, Ying Y (2021). On COVID-19 outbreaks predictions: Issues on stability, parameter sensitivity, and precision. Stoch. Anal. Appl. 39(3):383–404. DOI: 10.1080/07362994.2020.1802291. DOI
Thompson SK (1990). Adaptive cluster sampling. J. Am. Stat. Assoc. 85(412):1050–1059. DOI: 10.1080/01621459.1990.10474975. DOI
Ujiie M, Tsuzuki S, Ohmagari N (2020). Effect of temperature on the infectivity of COVID-19. International Journal of Infectious Diseases. 95:301–303. DOI: 10.1016/j.ijid.2020.04.068. PubMed DOI PMC
Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, Saemundsdottir J, Sigurdsson A, Sulem P, Agustsdottir AB, et al. (2020). Spread of SARS-CoV-2 in the Icelandic Population. N Engl. J. Med. 382(24):2302–2315. DOI: 10.1056/NEJMoa2006100. PubMed DOI PMC
Boer H (1993). AIDS – Welche Aussagekraft hat ein” positives” Test-Ergebnis? Stochastik in Der Schule. 13(2):1–12.
Mead R (1992). Statistical games 2 - medical diagnosis. Teach. Stat. 14(3):12–16. DOI: 10.1111/j.1467-9639.1992.tb00232.x. DOI
Council of EU, 5301/2/21 REV 2. (2021). Council Recommendation on a common framework for the use and validation of rapid antigen tests and the mutual recognition of COVID-19 test results in the EU.
Pagano M, Gauvreau K (2017). Principles of Biostatistics, 2nd ed. CRC Press.
Yobs A, Swanson R, Lamotte LJ (1985). Laboratory reliability of the Papanicolaou smear. Obstet Gynecol. 65(2):235–244. PubMed
Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, Tambe M, Mina MJ, Parker R (2021). Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 7(1)DOI: 10.1126/sciadv.abd5393. PubMed DOI PMC
Pavelka M, et al. (2021). The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia. Science. 372(6542):635–641. PubMed PMC
Roda WC, Varughese MB, Han D, Li MY (2020). Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Disease Model. 5:271–281. PubMed PMC
Lintusaari J, Gutmann MU, Kaski S, Corander J (2016). On the identifiability of transmission dynamic models for infectious diseases. Genetics. 202(3):911–918. 01 DOI: 10.1534/genetics.115.180034. PubMed DOI PMC
European Centre for Disease Prevention & Control. (2020). Population-wide testing of SARS-CoV-2: country experiences and potential approaches in the EU/EEA and the United Kingdom
Slováková J, Marek J (2014). Analýza dostupnosti ZZS. Forum Statisticum Slovacum. 2: 126–130
Jánošíková L’., Kvet M, Jankovič P, Gábri šová L (2019). An optimization and simulation approach to emergency stations relocation. Cent. Eur. J. Oper. Res. 27(3):737–758. DOI: 10.1007/s10100-019-00612-5. DOI
Zhang L, Guo H (2020). Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv. Biomarker Sci. Technol. 2:1–23. DOI: 10.1016/j.abst.2020.08.001. PubMed DOI PMC
Biomarkers Definitions Working Group. (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69(3):89–95 PubMed
FDA-NIH Biomarker Working Group. (2016). BEST (Biomarkers, Endpoints, and Other Tools) Resource. Bethesda, MD: National Institutes of Health (US)
Buyse M (2007). Towards validation of statistically reliable biomarkers. Eur. J. Cancer Suppl. 5(5):89–95. ECCO 14 Educational Book. DOI: 10.1016/S1359-6349(07)70028-9. DOI
Gosho M, Nagashima K, Sato Y (2012). Study designs and statistical analyses for biomarker research. Sensors. 12(7):8966–8986. DOI: 10.3390/s120708966. PubMed DOI PMC
Arya R, Antonisamy B, Kumar S (2012). Sample size estimation in prevalence studies. Indian J. Pediatr. 79(11):1482–1488. Nov DOI: 10.1007/s12098-012-0763-3. PubMed DOI
Turk P, Borkowski JJ (2005). A review of adaptive cluster sampling: 1990–2003. Environ. Ecol. Stat. 12(1):55–94. Mar DOI: 10.1007/s10651-005-6818-0. DOI
Chilean Minstry of Health (2020). 14° Informe Epidemiólogico, May
Huang X, Wei F, Hu L, Wen L, Chen K (2020). Epidemiology and clinical characteristics of COVID-19. Arch. Iran. Med. 23(4):268–271. DOI: 10.34172/aim.2020.09. PubMed DOI
Rodriguez-Morales AJ, Rodriguez-Morales AG, Méndez CA, Hernández-Botero S (2020). Tracing new clinical manifestations in patients with covid-19 in chile and its potential relationship with the SARS-CoV-2 divergence. Curr. Trop. Med. Rep. 7(3):74–75. DOI: 10.1007/s40475-020-00205-2. PubMed DOI PMC
Conde G, Pájaro LDQ, Marzola IDQ, Villegas YR, Salazar LRM (2020). Neurotropism of SARS-CoV 2: Mechanisms and manifestations. J. Neurol. Sci. PubMed PMC
Baig AM (2020). Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci. Ther. 26(5):499–501. DOI: 10.1111/cns.13372. PubMed DOI PMC
Wang H, Li X, Li T, Zhang S, Wang L, Wu X, Liu J (2020). The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur. J. Clin. Microbiol. Infect. Dis. 39(9):1629–1635. DOI: 10.1007/s10096-020-03899-4. PubMed DOI PMC
Córdova-Lepe F, Gutiérrez-Aguilar R, Gutiérrez-Jara JP (2020). Número de casos COVID-19 en Chile a 120 días con datos al 21/03/2020 y umbral del esfuerzo diario para aplanar la epi-curva. Medwave. 20(02):e7861–e7861. PubMed
Rojas-Vallejos J (2020). Strengths and limitations of mathematical models in pandemics-the case of COVID-19 in Chile. Medwave. 20(03):e7874–e7874. DOI: 10.5867/medwave.2020.03.7874. PubMed DOI
Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D (2020). Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int. J. Infect. Dis. 93:201–204. PubMed PMC
Donnat C, Holmes S (2021). Modeling the heterogeneity in COVID-19’s reproductive number and its impact on predictive scenarios. arXiv:2004.05272. :1–29. DOI: 10.1080/02664763.2021.1941806. PubMed DOI PMC
Kanagarathinam K, Sekar K (2020). Estimation of reproduction number (Ro) and early prediction of 2019 Novel Coronavirus Disease (COVID-19) Outbreak in India using statistical computing approach. Epidemiol. Health. e2020028. PubMed PMC
Guliyev H (2020). Determining the spatial effects of COVID-19 using the spatial panel data model. Spatial Stat. 38:100443. DOI: 10.1016/j.spasta.2020.100443. PubMed DOI PMC
Kutner MH, Nachtsheim CJ, Neter J, Li W (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill, New York.
James G, Witten D, Hastie T, Tibshirani R (2013). An Introduction to Statistical Learning, Vol. 112. New York: Springer.
LeSage JP (2008). An introduction to spatial econometrics. REI. 123(123):19–44. DOI: 10.4000/rei.3887. DOI
Oseledets V (1968). A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19:197–231.
Allen LJ (1994). Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci. 124(1):83–105. DOI: 10.1016/0025-5564(94)90025-6. PubMed DOI
Li T-Y, Yorke JA (1975). Period three implies chaos. Am. Math. Mon. 82(10):985–992. DOI: 10.2307/2318254. DOI
Aulbach B, Kieninger B (2001). On three definitions of chaos. Nonlinear Dyn. Syst. Theory. 1(1):23–37.
Kolyada S, Snoha L (1997). Some aspects of topological transitivity – a survey. Grazer Math. Ber. 334:3–35.
Rosenstein MT, Collins JJ, De Luca CJ (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D. 65(1/2):117–134. DOI: 10.1016/0167-2789(93)90009-P. DOI
Ahmed N, Maqsood A, Abduljabbar T, Vohra F (2020). Tobacco smoking a potential risk factor in transmission of COVID-19 infection. Pak. J. Med. Sci. 36(COVID19-S4) DOI: 10.12669/pjms.36.COVID19-S4.2739. PubMed DOI PMC
Patanavanich R, Glantz SA (2020). Smoking is associated with COVID-19 progression: A meta-analysis. Nicotine Tob Res. 22(9):1653–1656. PubMed PMC
Silva A. L. O. d., Moreira JC, Martins SR (2020). COVID-19 and smoking: a high-risk association. Cadernos de Saúde Pública. 36:e00072020. DOI: 10.1590/0102-311x00072020. PubMed DOI
Wang J, Tang K, Feng K, Lv W High temperature and high humidity reduce the transmission of COVID-19. Available at SSRN 3551767 (2020).
Halleck Vega S, Elhorst JP (2015). The SLX model. J. Reg. Sci. 55(3):339–363. DOI: 10.1111/jors.12188. DOI
Elhorst JP, Halleck Vega S (2017). The SLX model: extensions and the sensitivity of spatial spillovers to W. Papeles de Economıa Española. 152:34–50.
Elhorst JP (2010). Applied spatial econometrics: Raising the bar. Spat. Econ. Anal. 5(1):9–28. DOI: 10.1080/17421770903541772. DOI
Nagelkerke NJ (1991). A note on a general definition of the coefficient of determination. Biometrika. 78(3):691–692. DOI: 10.1093/biomet/78.3.691. DOI
Cox DR, Snell E (1989). Journal of Analysis of Binary Data, vol. 32. CRC Press.
Akaike H (1973). Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, ed. Second International Symposium on Information Theory. Budapest: Academiai Kiado.
Akaike H (1998). Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike. New York: Springer, pp. 199–213.
Cavanaugh JE (1997). Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat. Probab. Lett. 33(2):201–208. DOI: 10.1016/S0167-7152(96)00128-9. DOI
Schwarz G (1978). Estimating the dimension of a model. Ann. Statist. 6(2):461–464. DOI: 10.1214/aos/1176344136. DOI
Medina FA, Stehlí k M (2019). Discussion on “Covariate-assisted ranking and screening for large-scale two-sample inference. JRSS-B. 81(2):187–234. PubMed PMC
Fleming KM, West J, Aithal GP, Fletcher AE (2011). Abnormal liver tests in people aged 75 and above: Prevalence and association with mortality. Aliment. Pharmacol. Ther. 34(3):324–334. DOI: 10.1111/j.1365-2036.2011.04718.x. PubMed DOI
Gail MH (1981). Evaluating serial cancer marker studies in patients at risk of recurrent disease. Biometrics. 37(1):67–78. DOI: 10.2307/2530523. PubMed DOI
Riley RD, Abrams KR, Sutton AJ, Lambert PC, Jones DR, Heney D, Burchill SA (2003). Reporting of prognostic markers: Current problems and development of guidelines for evidence-based practice in the future. Br. J. Cancer. 88:1191. (Apr EP. Clinical. DOI: 10.1038/sj.bjc.6600886. PubMed DOI PMC
Hingorani AD, Windt DA v. d.,
Riley RD, Abrams K, Moons KGM, Steyerberg EW, Schroter S, Sauerbrei W, Altman DG, Hemingway H (2013). Prognosis research strategy (PROGRESS) 4: Stratified medicine research. BMJ. 346 DOI: 10.1136/bmj.e5793. PubMed DOI PMC
Royston P, Parmar MKB (2002). Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat. Med. 21(15):2175–2197. DOI: 10.1002/sim.1203. PubMed DOI
Lawrence E, Vegvari C, Ower A, Hadjichrysanthou C, De Wolf F, Anderson RM (2017). A systematic review of longitudinal studies which measure Alzheimer’s disease biomarkers. Journal of Alzheimer’s Disease. 59(4):1359–1379. DOI: 10.3233/JAD-170261. PubMed DOI PMC
Grabisch M, Marichal J, Mesiar R, Pap E (2009). Aggregation Functions. Encyclopedia of Mathematics and Its Applications. Cambridge University Press,
Stehlík M (2016). On convergence of topological aggregation functions. Fuzzy Sets Syst. 287:48–56. Theme: Aggregation Operations. DOI: 10.1016/j.fss.2014.11.022. DOI