REDACS: Regional emergency-driven adaptive cluster sampling for effective COVID-19 management

. 2023 ; 41 (3) : 474-508. [epub] 20220225

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37982071

Grantová podpora
R01 HL089778 NHLBI NIH HHS - United States
UL1 TR003142 NCATS NIH HHS - United States

As COVID-19 is spreading, national agencies need to monitor and track several metrics. Since we do not have perfect testing programs on the hand, one needs to develop an advanced sampling strategies for prevalence study, control and management. Here we introduce REDACS: Regional emergency-driven adaptive cluster sampling for effective COVID-19 management and control and justify its usage for COVID-19. We show its advantages over classical massive individual testing sampling plans. We also point out how regional and spatial heterogeneity underlines proper sampling. Fundamental importance of adaptive control parameters from emergency health stations and medical frontline is outlined. Since the Northern hemisphere entered Autumn and Winter season (this paper was originally submitted in November 2020), practical illustration from spatial heterogeneity of Chile (Southern hemisphere, which already experienced COVID-19 winter outbreak peak) is underlying the importance of proper regional heterogeneity of sampling plan. We explain the regional heterogeneity by microbiological backgrounds and link it to behavior of Lyapunov exponents. We also discuss screening by antigen tests from the perspective of "on the fly" biomarker validation, i.e., during the screening.

Zobrazit více v PubMed

Swaminathan A, Subramanian S (2020). Reflections on designing population surveys for COVID-19 infection and prevalence. GeroScience. 42(6):1445–1448. DOI: 10.1007/s11357-020-00253-6. PubMed DOI PMC

Stehlík M, Kisel’ák J, Dinamarca MA, Li Y, Ying Y (2021). On COVID-19 outbreaks predictions: Issues on stability, parameter sensitivity, and precision. Stoch. Anal. Appl. 39(3):383–404. DOI: 10.1080/07362994.2020.1802291. DOI

Thompson SK (1990). Adaptive cluster sampling. J. Am. Stat. Assoc. 85(412):1050–1059. DOI: 10.1080/01621459.1990.10474975. DOI

Ujiie M, Tsuzuki S, Ohmagari N (2020). Effect of temperature on the infectivity of COVID-19. International Journal of Infectious Diseases. 95:301–303. DOI: 10.1016/j.ijid.2020.04.068. PubMed DOI PMC

Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, Saemundsdottir J, Sigurdsson A, Sulem P, Agustsdottir AB, et al. (2020). Spread of SARS-CoV-2 in the Icelandic Population. N Engl. J. Med. 382(24):2302–2315. DOI: 10.1056/NEJMoa2006100. PubMed DOI PMC

Boer H (1993). AIDS – Welche Aussagekraft hat ein” positives” Test-Ergebnis? Stochastik in Der Schule. 13(2):1–12.

Mead R (1992). Statistical games 2 - medical diagnosis. Teach. Stat. 14(3):12–16. DOI: 10.1111/j.1467-9639.1992.tb00232.x. DOI

Council of EU, 5301/2/21 REV 2. (2021). Council Recommendation on a common framework for the use and validation of rapid antigen tests and the mutual recognition of COVID-19 test results in the EU.

Pagano M, Gauvreau K (2017). Principles of Biostatistics, 2nd ed. CRC Press.

Yobs A, Swanson R, Lamotte LJ (1985). Laboratory reliability of the Papanicolaou smear. Obstet Gynecol. 65(2):235–244. PubMed

Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, Tambe M, Mina MJ, Parker R (2021). Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 7(1)DOI: 10.1126/sciadv.abd5393. PubMed DOI PMC

Pavelka M, et al. (2021). The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia. Science. 372(6542):635–641. PubMed PMC

Roda WC, Varughese MB, Han D, Li MY (2020). Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Disease Model. 5:271–281. PubMed PMC

Lintusaari J, Gutmann MU, Kaski S, Corander J (2016). On the identifiability of transmission dynamic models for infectious diseases. Genetics. 202(3):911–918. 01 DOI: 10.1534/genetics.115.180034. PubMed DOI PMC

European Centre for Disease Prevention & Control. (2020). Population-wide testing of SARS-CoV-2: country experiences and potential approaches in the EU/EEA and the United Kingdom

Slováková J, Marek J (2014). Analýza dostupnosti ZZS. Forum Statisticum Slovacum. 2: 126–130

Jánošíková L’., Kvet M, Jankovič P, Gábri šová L (2019). An optimization and simulation approach to emergency stations relocation. Cent. Eur. J. Oper. Res. 27(3):737–758. DOI: 10.1007/s10100-019-00612-5. DOI

Zhang L, Guo H (2020). Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv. Biomarker Sci. Technol. 2:1–23. DOI: 10.1016/j.abst.2020.08.001. PubMed DOI PMC

Biomarkers Definitions Working Group. (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69(3):89–95 PubMed

FDA-NIH Biomarker Working Group. (2016). BEST (Biomarkers, Endpoints, and Other Tools) Resource. Bethesda, MD: National Institutes of Health (US)

Buyse M (2007). Towards validation of statistically reliable biomarkers. Eur. J. Cancer Suppl. 5(5):89–95. ECCO 14 Educational Book. DOI: 10.1016/S1359-6349(07)70028-9. DOI

Gosho M, Nagashima K, Sato Y (2012). Study designs and statistical analyses for biomarker research. Sensors. 12(7):8966–8986. DOI: 10.3390/s120708966. PubMed DOI PMC

Arya R, Antonisamy B, Kumar S (2012). Sample size estimation in prevalence studies. Indian J. Pediatr. 79(11):1482–1488. Nov DOI: 10.1007/s12098-012-0763-3. PubMed DOI

Turk P, Borkowski JJ (2005). A review of adaptive cluster sampling: 1990–2003. Environ. Ecol. Stat. 12(1):55–94. Mar DOI: 10.1007/s10651-005-6818-0. DOI

Chilean Minstry of Health (2020). 14° Informe Epidemiólogico, May

Huang X, Wei F, Hu L, Wen L, Chen K (2020). Epidemiology and clinical characteristics of COVID-19. Arch. Iran. Med. 23(4):268–271. DOI: 10.34172/aim.2020.09. PubMed DOI

Rodriguez-Morales AJ, Rodriguez-Morales AG, Méndez CA, Hernández-Botero S (2020). Tracing new clinical manifestations in patients with covid-19 in chile and its potential relationship with the SARS-CoV-2 divergence. Curr. Trop. Med. Rep. 7(3):74–75. DOI: 10.1007/s40475-020-00205-2. PubMed DOI PMC

Conde G, Pájaro LDQ, Marzola IDQ, Villegas YR, Salazar LRM (2020). Neurotropism of SARS-CoV 2: Mechanisms and manifestations. J. Neurol. Sci. PubMed PMC

Baig AM (2020). Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci. Ther. 26(5):499–501. DOI: 10.1111/cns.13372. PubMed DOI PMC

Wang H, Li X, Li T, Zhang S, Wang L, Wu X, Liu J (2020). The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur. J. Clin. Microbiol. Infect. Dis. 39(9):1629–1635. DOI: 10.1007/s10096-020-03899-4. PubMed DOI PMC

Córdova-Lepe F, Gutiérrez-Aguilar R, Gutiérrez-Jara JP (2020). Número de casos COVID-19 en Chile a 120 días con datos al 21/03/2020 y umbral del esfuerzo diario para aplanar la epi-curva. Medwave. 20(02):e7861–e7861. PubMed

Rojas-Vallejos J (2020). Strengths and limitations of mathematical models in pandemics-the case of COVID-19 in Chile. Medwave. 20(03):e7874–e7874. DOI: 10.5867/medwave.2020.03.7874. PubMed DOI

Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D (2020). Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int. J. Infect. Dis. 93:201–204. PubMed PMC

Donnat C, Holmes S (2021). Modeling the heterogeneity in COVID-19’s reproductive number and its impact on predictive scenarios. arXiv:2004.05272. :1–29. DOI: 10.1080/02664763.2021.1941806. PubMed DOI PMC

Kanagarathinam K, Sekar K (2020). Estimation of reproduction number (Ro) and early prediction of 2019 Novel Coronavirus Disease (COVID-19) Outbreak in India using statistical computing approach. Epidemiol. Health. e2020028. PubMed PMC

Guliyev H (2020). Determining the spatial effects of COVID-19 using the spatial panel data model. Spatial Stat. 38:100443. DOI: 10.1016/j.spasta.2020.100443. PubMed DOI PMC

Kutner MH, Nachtsheim CJ, Neter J, Li W (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill, New York.

James G, Witten D, Hastie T, Tibshirani R (2013). An Introduction to Statistical Learning, Vol. 112. New York: Springer.

LeSage JP (2008). An introduction to spatial econometrics. REI. 123(123):19–44. DOI: 10.4000/rei.3887. DOI

Oseledets V (1968). A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19:197–231.

Allen LJ (1994). Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci. 124(1):83–105. DOI: 10.1016/0025-5564(94)90025-6. PubMed DOI

Li T-Y, Yorke JA (1975). Period three implies chaos. Am. Math. Mon. 82(10):985–992. DOI: 10.2307/2318254. DOI

Aulbach B, Kieninger B (2001). On three definitions of chaos. Nonlinear Dyn. Syst. Theory. 1(1):23–37.

Kolyada S, Snoha L (1997). Some aspects of topological transitivity – a survey. Grazer Math. Ber. 334:3–35.

Rosenstein MT, Collins JJ, De Luca CJ (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D. 65(1/2):117–134. DOI: 10.1016/0167-2789(93)90009-P. DOI

Ahmed N, Maqsood A, Abduljabbar T, Vohra F (2020). Tobacco smoking a potential risk factor in transmission of COVID-19 infection. Pak. J. Med. Sci. 36(COVID19-S4) DOI: 10.12669/pjms.36.COVID19-S4.2739. PubMed DOI PMC

Patanavanich R, Glantz SA (2020). Smoking is associated with COVID-19 progression: A meta-analysis. Nicotine Tob Res. 22(9):1653–1656. PubMed PMC

Silva A. L. O. d., Moreira JC, Martins SR (2020). COVID-19 and smoking: a high-risk association. Cadernos de Saúde Pública. 36:e00072020. DOI: 10.1590/0102-311x00072020. PubMed DOI

Wang J, Tang K, Feng K, Lv W High temperature and high humidity reduce the transmission of COVID-19. Available at SSRN 3551767 (2020).

Halleck Vega S, Elhorst JP (2015). The SLX model. J. Reg. Sci. 55(3):339–363. DOI: 10.1111/jors.12188. DOI

Elhorst JP, Halleck Vega S (2017). The SLX model: extensions and the sensitivity of spatial spillovers to W. Papeles de Economıa Española. 152:34–50.

Elhorst JP (2010). Applied spatial econometrics: Raising the bar. Spat. Econ. Anal. 5(1):9–28. DOI: 10.1080/17421770903541772. DOI

Nagelkerke NJ (1991). A note on a general definition of the coefficient of determination. Biometrika. 78(3):691–692. DOI: 10.1093/biomet/78.3.691. DOI

Cox DR, Snell E (1989). Journal of Analysis of Binary Data, vol. 32. CRC Press.

Akaike H (1973). Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, ed. Second International Symposium on Information Theory. Budapest: Academiai Kiado.

Akaike H (1998). Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike. New York: Springer, pp. 199–213.

Cavanaugh JE (1997). Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat. Probab. Lett. 33(2):201–208. DOI: 10.1016/S0167-7152(96)00128-9. DOI

Schwarz G (1978). Estimating the dimension of a model. Ann. Statist. 6(2):461–464. DOI: 10.1214/aos/1176344136. DOI

Medina FA, Stehlí k M (2019). Discussion on “Covariate-assisted ranking and screening for large-scale two-sample inference. JRSS-B. 81(2):187–234. PubMed PMC

Fleming KM, West J, Aithal GP, Fletcher AE (2011). Abnormal liver tests in people aged 75 and above: Prevalence and association with mortality. Aliment. Pharmacol. Ther. 34(3):324–334. DOI: 10.1111/j.1365-2036.2011.04718.x. PubMed DOI

Gail MH (1981). Evaluating serial cancer marker studies in patients at risk of recurrent disease. Biometrics. 37(1):67–78. DOI: 10.2307/2530523. PubMed DOI

Riley RD, Abrams KR, Sutton AJ, Lambert PC, Jones DR, Heney D, Burchill SA (2003). Reporting of prognostic markers: Current problems and development of guidelines for evidence-based practice in the future. Br. J. Cancer. 88:1191. (Apr EP. Clinical. DOI: 10.1038/sj.bjc.6600886. PubMed DOI PMC

Hingorani AD, Windt DA v. d.,

Riley RD, Abrams K, Moons KGM, Steyerberg EW, Schroter S, Sauerbrei W, Altman DG, Hemingway H (2013). Prognosis research strategy (PROGRESS) 4: Stratified medicine research. BMJ. 346 DOI: 10.1136/bmj.e5793. PubMed DOI PMC

Royston P, Parmar MKB (2002). Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat. Med. 21(15):2175–2197. DOI: 10.1002/sim.1203. PubMed DOI

Lawrence E, Vegvari C, Ower A, Hadjichrysanthou C, De Wolf F, Anderson RM (2017). A systematic review of longitudinal studies which measure Alzheimer’s disease biomarkers. Journal of Alzheimer’s Disease. 59(4):1359–1379. DOI: 10.3233/JAD-170261. PubMed DOI PMC

Grabisch M, Marichal J, Mesiar R, Pap E (2009). Aggregation Functions. Encyclopedia of Mathematics and Its Applications. Cambridge University Press,

Stehlík M (2016). On convergence of topological aggregation functions. Fuzzy Sets Syst. 287:48–56. Theme: Aggregation Operations. DOI: 10.1016/j.fss.2014.11.022. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...