Association between left ventricular ejection fraction, mortality and use of mechanical circulatory support in patients with non-ischaemic cardiogenic shock
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37982863
PubMed Central
PMC10954940
DOI
10.1007/s00392-023-02332-y
PII: 10.1007/s00392-023-02332-y
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiogenic shock, Left ventricular ejection fraction, Mechanical circulatory support, Non-ischaemic,
- MeSH
- funkce levé komory srdeční MeSH
- kardiogenní šok * diagnóza terapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- podpůrné srdeční systémy * MeSH
- retrospektivní studie MeSH
- senioři MeSH
- tepový objem MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Currently, use of mechanical circulatory support (MCS) in non-ischaemic cardiogenic shock (CS) is predominantly guided by shock-specific markers, and not by markers of cardiac function. We hypothesise that left ventricular ejection fraction (LVEF) can identify patients with a higher likelihood to benefit from MCS and thus help to optimise their expected benefit. METHODS: Patients with non-ischaemic CS and available data on LVEF from 16 tertiary-care centres in five countries were analysed. Cox regression models were fitted to evaluate the association between LVEF and mortality, as well as the interaction between LVEF, MCS use and mortality. RESULTS: N = 807 patients were analysed: mean age 63 [interquartile range (IQR) 51.5-72.0] years, 601 (74.5%) male, lactate 4.9 (IQR 2.6-8.5) mmol/l, LVEF 20 (IQR 15-30) %. Lower LVEF was more frequent amongst patients with more severe CS, and MCS was more likely used in patients with lower LVEF. There was no association between LVEF and 30-day mortality risk in the overall study cohort. However, there was a significant interaction between MCS use and LVEF, indicating a lower 30-day mortality risk with MCS use in patients with LVEF ≤ 20% (hazard ratio 0.72, 95% confidence interval 0.51-1.02 for LVEF ≤ 20% vs. hazard ratio 1.31, 95% confidence interval 0.85-2.01 for LVEF > 20%, interaction-p = 0.017). CONCLUSION: This retrospective study may indicate a lower mortality risk with MCS use only in patients with severely reduced LVEF. This may propose the inclusion of LVEF as an adjunctive parameter for MCS decision-making in non-ischaemic CS, aiming to optimise the benefit-risk ratio.
Cardio Center Humanitas Clinical and Research Center IRCCS Rozzano Milan Italy
Department of Cardiology AZ Sint Lucas Ghent Belgium
Department of Cardiology Charité Universitätsmedizin Berlin Campus Benjamin Franklin Berlin Germany
Department of Cardiology IKEM Prague Czech Republic
Department of Cardiology Paracelsus Medical University Nürnberg Nuremberg Germany
Department of Intensive Care Medicine University Medical Center Hamburg Eppendorf Hamburg Germany
Department of Internal Medicine 1 University Hospital Jena Jena Germany
Department of Internal Medicine 1 University Hospital Würzburg Würzburg Germany
Department of Medicine 1 University Hospital LMU Munich Munich Germany
Department of Perioperative Medicine St Bartholomew's Hospital London UK
German Center for Cardiovascular Research Partner Site Hamburg Kiel Lübeck Hamburg Germany
Herzzentrum Dresden Technische Universität Dresden Dresden Germany
IRCCS S Maria Nascente Fondazione Don Carlo Gnocchi ONLUS Milan Italy
Medizinische Klinik 2 Kliniken Nordoberpfalz AG Weiden Germany
University Heart Center Lübeck University Hospital Schleswig Holstein Lübeck Germany
Zobrazit více v PubMed
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021;42(36):3599–3726. doi: 10.1093/EURHEARTJ/EHAB368. PubMed DOI
Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society. Catheter Cardiovasc Interv. 2019;94(1):29–37. doi: 10.1002/ccd.28329. PubMed DOI
Naidu SS, Baran DA, Jentzer JC, et al. SCAI SHOCK Stage Classification Expert Consensus Update: a Review and Incorporation of Validation Studies: This statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association. J Am Coll Cardiol. 2022;79(9):933–946. doi: 10.1016/j.jacc.2022.01.018. PubMed DOI
Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. J Am Med Assoc. 2006;295(21):2511–2515. doi: 10.1001/jama.295.21.2511. PubMed DOI PMC
Thiele H, Akin I, Sandri M, et al. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med. 2017;377(25):2419–2432. doi: 10.1056/nejmoa1710261. PubMed DOI
Thiele H, Ohman EM, De Waha-Thiele S, Zeymer U, Desch S. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J. 2019;40(32):2671–2683. doi: 10.1093/eurheartj/ehz363. PubMed DOI
Schrage B, Becher PM, Goßling A, et al. Temporal trends in incidence, causes, use of mechanical circulatory support and mortality in cardiogenic shock. ESC Hear Fail. 2021;8(2):1295–1303. doi: 10.1002/ehf2.13202. PubMed DOI PMC
Osman M, Syed M, Patibandla S, et al. (2021) Fifteen-year trends in incidence of cardiogenic shock hospitalization and in-hospital mortality in the united states. J Am Heart Assoc. 10.1161/JAHA.121.021061 PubMed PMC
Berg DD, Bohula EA, Van Diepen S, et al. (2019) Epidemiology of shock in contemporary cardiac intensive care units: data from the critical care cardiology trials network registry. Circ Cardiovasc Qual Outcomes. 10.1161/CIRCOUTCOMES.119.005618/FORMAT/EPUB PubMed PMC
Shah M, Patnaik S, Patel B, et al. (2017) Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin Res Cardiol 107(4):287–303. 10.1007/S00392-017-1182-2 PubMed
Left ventricular unloading to improve outcome in cardiogenic shock patients on VA-ECMO—Full Text View—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT05577195. Accessed April 6, 2023
Udesen NJ, Møller JE, Lindholm MG, et al. Rationale and design of DanGer shock: Danish–German cardiogenic shock trial. Am Heart J. 2019;214:60–68. doi: 10.1016/j.ahj.2019.04.019. PubMed DOI
Thiele H, Freund A, Gimenez MR, et al. Extracorporeal life support in patients with acute myocardial infarction complicated by cardiogenic shock—design and rationale of the ECLS-SHOCK trial. Am Heart J. 2021;234:1–11. doi: 10.1016/j.ahj.2021.01.002. PubMed DOI
Schrage B, Beer BN, Savarese G, et al (2021) Eligibility for mechanical circulatory support devices based on current and past randomised cardiogenic shock trials. Eur J Heart Fail. 10.1002/ejhf.2274 PubMed
Combes A, Price S, Slutsky AS, Brodie D. Temporary circulatory support for cardiogenic shock. Lancet. 2020;396(10245):199–212. doi: 10.1016/S0140-6736(20)31047-3. PubMed DOI
Dhruva SS, Ross JS, Mortazavi BJ, et al. Association of use of an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump with in-hospital mortality and major bleeding among patients with acute myocardial infarction complicated by cardiogenic shock. JAMA J Am Med Assoc. 2020;323(8):734–745. doi: 10.1001/jama.2020.0254. PubMed DOI PMC
Burns S, Constantin N, Robles P. Understanding the long-term sequelae of ECMO survivors. Intensive Care Med. 2018;44(7):1144–1147. doi: 10.1007/s00134-017-4714-3. PubMed DOI
Schrage B, Becher PM, Bernhardt A, et al (2020) Left ventricular unloading is associated with lower mortality in patients with cardiogenic shock treated with venoarterial extracorporeal membrane oxygenation: results from an international, multicenter cohort study. Circulation. 10.1161/CIRCULATIONAHA.120.048792 PubMed PMC
Schrage B, Westermann D. Mechanical circulatory support devices in cardiogenic shock and acute heart failure: current evidence. Curr Opin Crit Care. 2019;25(4):391–396. doi: 10.1097/MCC.0000000000000629. PubMed DOI
Jentzer JC, Wiley BM, Anavekar NS, et al. Noninvasive hemodynamic assessment of shock severity and mortality risk prediction in the cardiac intensive care unit. JACC Cardiovasc Imaging. 2021;14(2):321–332. doi: 10.1016/j.jcmg.2020.05.038. PubMed DOI
Galderisi M, Cosyns B, Edvardsen T, et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imag. Eur Heart J Cardiovasc Imaging. 2017;18(12):1301–1310. doi: 10.1093/ehjci/jex244. PubMed DOI
Bozkurt B, Coats AJS, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition. Eur J Heart Fail. 2021;23(3):352–380. doi: 10.1002/ejhf.2115. PubMed DOI
Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese society of echocardiography. Eur J Echocardiogr. 2011;12(3):167–205. doi: 10.1093/ejechocard/jer021. PubMed DOI
Mitchell C, Rahko PS, Blauwet LA, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1–64. doi: 10.1016/j.echo.2018.06.004. PubMed DOI
Quartagno M, Grund S, Carpenter J (2013) jomo: a flexible package for two-level joint modelling multiple imputation. XX(i):1–24
Schrage B, Dabboura S, Yan I, et al. Application of the SCAI classification in a cohort of patients with cardiogenic shock. Catheter Cardiovasc Interv. 2020;96(3):E213–E219. doi: 10.1002/ccd.28707. PubMed DOI
Schrage B, Weimann J, Dabboura S, et al. Patient characteristics, treatment and outcome in non-ischemic vs. ischemic cardiogenic shock. J Clin Med. 2020;9(4):1–11. doi: 10.3390/jcm9040931. PubMed DOI PMC
Picard MH, Davidoff R, Sleeper LA, et al. Echocardiographic predictors of survival and response to early revascularization in cardiogenic shock. Circulation. 2003;107(2):279–284. doi: 10.1161/01.CIR.0000045667.11911.F6. PubMed DOI
Harjola VP, Lassus J, Sionis A, et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur J Heart Fail. 2015;17(5):501–509. doi: 10.1002/ejhf.260. PubMed DOI
Banning AS, Adriaenssens T, Berry C, et al. Veno-arterial extracorporeal membrane oxygenation (ECMO) in patients with cardiogenic shock: rationale and design of the randomised, multicentre, open-label EURO SHOCK trial. EuroIntervention. 2021;16(15):E1227–E1236. doi: 10.4244/EIJ-D-20-01076. PubMed DOI PMC
Basir MB, Lemor A, Gorgis S, et al. Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheter Cardiovasc Interv. 2022;99(3):650–657. doi: 10.1002/ccd.29895. PubMed DOI
De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–789. doi: 10.1056/nejmoa0907118. PubMed DOI
Heidenreich PA, Bozkurt B, Aguilar D, et al (2022) AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. 10.1161/CIR.0000000000001063 PubMed
Levy B, Buzon J, Kimmoun A. Inotropes and vasopressors use in cardiogenic shock: when, which and how much? Curr Opin Crit Care. 2019;25(4):384–390. doi: 10.1097/MCC.0000000000000632. PubMed DOI
Amin AP, Spertus JA, Curtis JP, et al (2020) The evolving landscape of impella use in the United States among patients undergoing percutaneous coronary intervention with mechanical circulatory support. Circulation. 10.1161/CIRCULATIONAHA.119.044007 PubMed
Taleb I, Koliopoulou AG, Tandar A, et al. Shock team approach in refractory cardiogenic shock requiring short-term mechanical circulatory support: a proof of concept. Circulation. 2019;140(1):98–100. doi: 10.1161/CIRCULATIONAHA.119.040654. PubMed DOI PMC
Tehrani BN, Truesdell AG, Sherwood MW, et al. Standardized team-based care for cardiogenic shock. J Am Coll Cardiol. 2019;73(13):1659–1669. doi: 10.1016/j.jacc.2018.12.084. PubMed DOI
Thiele H, Zeymer U, Neumann FJ, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet (London, England) 2013;382(9905):1638–1645. doi: 10.1016/S0140-6736(13)61783-3. PubMed DOI
Fincke R, Hochman JS, Lowe AM, et al (2004) SHOCK Investigators. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 44(2):340–348. 10.1016/j.jacc.2004.03.060 PubMed
Wu Y, Tian P, Liang L, et al. Afterload-related cardiac performance is a powerful hemodynamic predictor of mortality in patients with chronic heart failure. Ther Adv Chronic Dis. 2023 doi: 10.1177/20406223231171554. PubMed DOI PMC
Mathew R, Di Santo P, Jung RG, et al (2021) Milrinone as compared with dobutamine in the treatment of cardiogenic shock. N Engl J Med 385(6):516–525. 10.1056/NEJMoa2026845 PubMed
Sex-related differences in patients presenting with heart failure-related cardiogenic shock