Expecting the Unexpected: Entropy and Multifractal Systems in Finance

. 2023 Nov 09 ; 25 (11) : . [epub] 20231109

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37998219

Entropy serves as a measure of chaos in systems by representing the average rate of information loss about a phase point's position on the attractor. When dealing with a multifractal system, a single exponent cannot fully describe its dynamics, necessitating a continuous spectrum of exponents, known as the singularity spectrum. From an investor's point of view, a rise in entropy is a signal of abnormal and possibly negative returns. This means he has to expect the unexpected and prepare for it. To explore this, we analyse the New York Stock Exchange (NYSE) U.S. Index as well as its constituents. Through this examination, we assess their multifractal characteristics and identify market conditions (bearish/bullish markets) using entropy, an effective method for recognizing fluctuating fractal markets. Our findings challenge conventional beliefs by demonstrating that price declines lead to increased entropy, contrary to some studies in the literature that suggest that reduced entropy in market crises implies more determinism. Instead, we propose that bear markets are likely to exhibit higher entropy, indicating a greater chance of unexpected extreme events. Moreover, our study reveals a power-law behaviour and indicates the absence of variance.

Zobrazit více v PubMed

Zhou R., Cai R., Tong G. Applications of Entropy in Finance: A Review. Entropy. 2013;15:4909–4931. doi: 10.3390/e15114909. DOI

Jorion P. Risk Management Lessons from the Credit Crisis. Eur. Financ. Manag. 2009;15:923–933. doi: 10.1111/j.1468-036X.2009.00507.x. DOI

NASA-Space and Technology-Subcommittee on Space . NASA Program Management and Procurement Procedures and Practices: Hearings Before the Subcommittee on Space Science and Applications of the Committee on Science and Technology, U.S. House of Representatives, Ninety-seventh Congress, First Session, June 24, 25, 1981. US Government Printing Office; Washington, DC, USA: 1981. Number 16.

Orlando G. Coping with Risk and Uncertainty in Contemporary Economic Thought. 2022. [(accessed on 1 October 2023)]. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4209287.

Frittelli M. The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets. Math. Financ. 2000;10:39–52. doi: 10.1111/1467-9965.00079. DOI

Geman D., Geman H., Taleb N.N. Tail Risk Constraints and Maximum Entropy. Entropy. 2015;17:3724–3737. doi: 10.3390/e17063724. DOI

Kelbert M., Stuhl I., Suhov Y. Weighted entropy and optimal portfolios for risk-averse Kelly investments. Aequationes Math. 2018;92:165–200. doi: 10.1007/s00010-017-0515-6. DOI

Patel P., Raghunandan R., Annavarapu R.N. EEG-based human emotion recognition using entropy as a feature extraction measure. Brain Inform. 2021;8:1–13. doi: 10.1186/s40708-021-00141-5. PubMed DOI PMC

Lau Z.J., Pham T., Chen S.H.A., Makowski D. Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations. Eur. J. Neurosci. 2022;56:5047–5069. doi: 10.1111/ejn.15800. PubMed DOI PMC

McDonough I.M., Nashiro K. Network complexity as a measure of information processing across resting-state networks: Evidence from the Human Connectome Project. Front. Hum. Neurosci. 2014;8:409. doi: 10.3389/fnhum.2014.00409. PubMed DOI PMC

Shi W., Shang P., Ma Y., Sun S., Yeh C.H. A comparison study on stages of sleep: Quantifying multiscale complexity using higher moments on coarse-graining. Commun. Nonlinear Sci. Numer. Simul. 2017;44:292–303. doi: 10.1016/j.cnsns.2016.08.019. DOI

Heisz J.J., Gould M., McIntosh A.R. Age-related Shift in Neural Complexity Related to Task Performance and Physical Activity. J. Cogn. Neurosci. 2015;27:605–613. doi: 10.1162/jocn_a_00725. PubMed DOI

Kolmogorov A.N. A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. Tr. Mat. Instituta Im. VA Steklova. 1985;169:94–98.

Sinai Y.G. On the notion of entropy of a dynamical system. Proc. Dokl. Russ. Acad. Sci. 1959;124:768–771.

Pincus S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA. 1991;88:2297–2301. doi: 10.1073/pnas.88.6.2297. PubMed DOI PMC

Delgado-Bonal A., Marshak A. Approximate Entropy and Sample Entropy: A Comprehensive Tutorial. Entropy. 2019;21:541. doi: 10.3390/e21060541. PubMed DOI PMC

Richman J.S., Moorman J.R. Physiological time-series analysis using approximate and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI

Richman J.S., Lake D.E., Moorman J.R. Methods in Enzymology. Volume 384. Academic Press; Cambridge, MA, USA: 2004. Sample Entropy; pp. 172–184. PubMed DOI

Yentes J.M., Hunt N., Schmid K.K., Kaipust J.P., McGrath D., Stergiou N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Ann. Biomed. Eng. 2013;41:349–365. doi: 10.1007/s10439-012-0668-3. PubMed DOI PMC

Montesinos L., Castaldo R., Pecchia L. On the use of approximate entropy and sample entropy with centre of pressure time-series. J. NeuroEng. Rehabil. 2018;15:1–15. doi: 10.1186/s12984-018-0465-9. PubMed DOI PMC

Zhang H., He S.S. Analysis and Comparison of Permutation Entropy, Approximate Entropy and Sample Entropy; Proceedings of the 2018 International Symposium on Computer, Consumer and Control (IS3C); Taichung, Taiwan. 6–8 December 2018; pp. 209–212. DOI

Olbryś J., Majewska E. Regularity in Stock Market Indices within Turbulence Periods: The Sample Entropy Approach. Entropy. 2022;24:921. doi: 10.3390/e24070921. PubMed DOI PMC

Molina-Picó A., Cuesta-Frau D., Aboy M., Crespo C., Miró-Martínez P., Oltra-Crespo S. Comparative study of approximate entropy and sample entropy robustness to spikes. Artif. Intell. Med. 2011;53:97–106. doi: 10.1016/j.artmed.2011.06.007. PubMed DOI

Kohler B.U., Hennig C., Orglmeister R. The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 2002;21:42–57. doi: 10.1109/51.993193. PubMed DOI

Risso W.A. The informational efficiency and the financial crashes. Res. Int. Bus. Financ. 2008;22:396–408. doi: 10.1016/j.ribaf.2008.02.005. DOI

Ortiz-Cruz A., Rodriguez E., Ibarra-Valdez C., Alvarez-Ramirez J. Efficiency of crude oil markets: Evidences from informational entropy analysis. Energy Policy. 2012;41:365–373. doi: 10.1016/j.enpol.2011.10.057. DOI

Wang J., Wang X. COVID-19 and financial market efficiency: Evidence from an entropy-based analysis. Financ. Res. Lett. 2021;42:101888. doi: 10.1016/j.frl.2020.101888. PubMed DOI PMC

Mandelbrot B.B. The inescapable need for fractal tools in finance. Ann. Financ. 2005;1:193–195. doi: 10.1007/s10436-004-0008-1. DOI

Blackledge J., Lamphiere M. A Review of the Fractal Market Hypothesis for Trading and Market Price Prediction. Mathematics. 2021;10:117. doi: 10.3390/math10010117. DOI

Karaca Y., Zhang Y.D., Muhammad K. Characterizing Complexity and Self-Similarity Based on Fractal and Entropy Analyses for Stock Market Forecast Modelling. Expert Syst. Appl. 2020;144:113098. doi: 10.1016/j.eswa.2019.113098. DOI

Samko S.G. Theory and Applications. Taylor & Francis; Oxfordshire, UK: 1993. Fractional Integrals and Derivatives.

Miller K.S., Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience; Hoboken, NJ, USA: 1993.

Mandelbrot B.B., Van Ness J.W. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 1968;10:422–437. doi: 10.1137/1010093. DOI

Mörters P., Peres Y. Brownian Motion. Volume 30 Cambridge University Press; Cambridge, UK: 2010.

Karatzas I., Shreve S.E. Brownian Motion and Stochastic Calculus. Springer; New York, NY, USA: 2021. Brownian Motion; pp. 47–127. DOI

Machado J.A.T. Fractal and Entropy Analysis of the Dow Jones Index Using Multidimensional Scaling. Entropy. 2020;22:1138. doi: 10.3390/e22101138. PubMed DOI PMC

Rulkov N.F. Regularization of Synchronized Chaotic Bursts. Phys. Rev. Lett. 2001;86:183–186. doi: 10.1103/PhysRevLett.86.183. PubMed DOI

Wang C., Cao H. Stability and chaos of Rulkov map-based neuron network with electrical synapse. Commun. Nonlinear Sci. Numer. Simul. 2015;20:536–545. doi: 10.1016/j.cnsns.2014.06.015. DOI

Pisarchik A., Bashkirtseva I., Ryashko L. Chaos can imply periodicity in coupled oscillators. Europhys. Lett. 2017;117:40005. doi: 10.1209/0295-5075/117/40005. DOI

Pisarchik A.N., Hramov A.E. Coherence resonance in neural networks: Theory and experiments. Phys. Rep. 2023;1000:1–57. doi: 10.1016/j.physrep.2022.11.004. DOI

Orlando G., Bufalo M. Modelling bursts and chaos regularization in credit risk with a deterministic nonlinear model. Financ. Res. Lett. 2022;47:102599. doi: 10.1016/j.frl.2021.102599. DOI

Orlando G. Simulating heterogeneous corporate dynamics via the Rulkov map. Struct. Chang. Econ. Dyn. 2022;61:32–42. doi: 10.1016/j.strueco.2022.02.003. DOI

Stoop R., Orlando G., Bufalo M., Della Rossa F. Exploiting deterministic features in apparently stochastic data. Sci. Rep. 2022;12:1–14. doi: 10.1038/s41598-022-23212-x. PubMed DOI PMC

Orlando G., Bufalo M., Stoop R. Financial markets’ deterministic aspects modeled by a low-dimensional equation. Sci. Rep. 2022;12:1693. doi: 10.1038/s41598-022-05765-z. PubMed DOI PMC

Stoop R. Nonlinearities in Economics. Springer; Cham, Switzerland: 2021. Stable Periodic Economic Cycles from Controlling; pp. 209–244. DOI

Lampart M., Lampartová A., Orlando G. On risk and market sentiments driving financial share price dynamics. Nonlinear Dyn. 2023;111:16585–16604. doi: 10.1007/s11071-023-08702-5. DOI

Stoop R. Nonlinearities in Economics. Springer; Cham, Switzerland: 2021. Signal Processing; pp. 111–121. DOI

Rossa F.D., Guerrero J., Orlando G., Taglialatela G. Nonlinearities in Economics. Springer; Cham, Switzerland: 2021. Applied Spectral Analysis; pp. 123–139. DOI

Lampart M., Lampartová A., Orlando G. On extensive dynamics of a Cournot heterogeneous model with optimal response. Chaos Interdiscip. J. Nonlinear Sci. 2022;32:023124. doi: 10.1063/5.0082439. PubMed DOI

Radunskaya A. Comparing random and deterministic time series. Econ. Theory. 1994;4:765–776. doi: 10.1007/BF01212029. DOI

Miskovic V., MacDonald K.J., Rhodes L.J., Cote K.A. Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Hum. Brain Mapp. 2019;40:538. doi: 10.1002/hbm.24393. PubMed DOI PMC

Drzazga-Szczęśniak E.A., Szczepanik P., Kaczmarek A.Z., Szczęśniak D. Entropy of Financial Time Series Due to the Shock of War. Entropy. 2023;25:823. doi: 10.3390/e25050823. PubMed DOI PMC

Grobys K. What do we know about the second moment of financial markets? Int. Rev. Financ. Anal. 2021;78:101891. doi: 10.1016/j.irfa.2021.101891. DOI

Hou K., Xue C., Zhang L. Replicating Anomalies. Rev. Financ. Stud. 2020;33:2019–2133. doi: 10.1093/rfs/hhy131. DOI

Harvey C.R., Liu Y., Zhu H. … and the Cross-Section of Expected Returns. Rev. Financ. Stud. 2016;29:5–68. doi: 10.1093/rfs/hhv059. DOI

Serra-Garcia M., Gneezy U. Nonreplicable publications are cited more than replicable ones. Sci. Adv. 2021;7:eabd1705. doi: 10.1126/sciadv.abd1705. PubMed DOI PMC

Bertoin J. Lévy Processes. Volume 121 Cambridge University Press; Cambridge, UK: 1996.

Applebaum D. Lévy Processes and Stochastic Calculus. Cambridge University Press; Cambridge, UK: 2009.

Orlando G., Zimatore G. Business cycle modeling between financial crises and black swans: Ornstein–Uhlenbeck stochastic process vs. Kaldor deterministic chaotic model. Chaos Interdiscip. J. Nonlinear Sci. 2020;30:083129. doi: 10.1063/5.0015916. PubMed DOI

Uhlenbeck G.E., Ornstein L.S. On the Theory of the Brownian Motion. Phys. Rev. 1930;36:823–841. doi: 10.1103/PhysRev.36.823. DOI

Gardiner C. Stochastic Methods. Springer; Berlin, Germany: 2009.

Orlando G., Mininni R.M., Bufalo M. Interest rates calibration with a CIR model. J. Risk Financ. 2019;20:370–387. doi: 10.1108/JRF-05-2019-0080. DOI

Orlando G., Mininni R.M., Bufalo M. A new approach to forecast market interest rates through the CIR model. Stud. Econ. Financ. 2019;37:267–292. doi: 10.1108/SEF-03-2019-0116. DOI

Bufalo M., Liseo B., Orlando G. Forecasting portfolio returns with skew-geometric Brownian motions. Appl. Stoch. Models. Bus. Ind. 2022;38:620–650. doi: 10.1002/asmb.2678. DOI

Ahmadi F., Pourmahmood Aghababa M., Kalbkhani H. Identification of Chaos in Financial Time Series to Forecast Nonperforming Loan. Math. Probl. Eng. 2022;2022:2055655. doi: 10.1155/2022/2055655. DOI

DataHub—A Complete Solution for Open Data Platforms, Data Catalogs, Data Lakes and Data Management. 2023. [(accessed on 26 September 2023)]. Available online: https://datahub.io/collections/stock-market-data.

Rosenhouse G. Colours of noise fractals and applications. Int. J. Des. Nat. Ecodynamics. 2014;9:255–265. doi: 10.2495/DNE-V9-N4-255-265. DOI

Vasicek O. An equilibrium characterization of the term structure. J. Financ. Econ. 1977;5:177–188. doi: 10.1016/0304-405X(77)90016-2. DOI

Brigo D., Mercurio F. The CIR++ model and other deterministic-shift extensions of short rate models; Proceedings of the 4th Columbia-JAFEE Conference for Mathematical Finance and Financial Engineering; Tokyo, Japan. 16–17 December 2000; pp. 563–584.

Hussain L., Saeed S., Awan I.A., Idris A. Multiscaled Complexity Analysis of EEG Epileptic Seizure Using Entropy-Based Techniques. Arch. Neurosci. 2018;5:e61161. doi: 10.5812/archneurosci.61161. DOI

MathWorks . MATLAB. Math Works; Natick, MA, USA: 2022. Version: 9.13.0 (R2022b)

Parnandi A. Approximate Entropy. 2023. [(accessed on 1 October 2023)]. Available online: https://www.mathworks.com/matlabcentral/fileexchange/26546-approximate-entropy.

Martínez-Cagigal V. Sample Entropy. 2018. [(accessed on 1 October 2023)]. Available online: https://www.mathworks.com/matlabcentral/fileexchange/69381-sample-entropy.

Strohsal T., Proaño C.R., Wolters J. Characterizing the financial cycle: Evidence from a frequency domain analysis. J. Bank. Financ. 2019;106:568–591. doi: 10.1016/j.jbankfin.2019.06.010. DOI

Di Matteo T. Multi-scaling in finance. Quant. Financ. 2007;7:21–36. doi: 10.1080/14697680600969727. DOI

Benedetto F., Mastroeni L., Vellucci P. Modeling the flow of information between financial time-series by an entropy-based approach. Ann. Oper. Res. 2021;299:1235–1252. doi: 10.1007/s10479-019-03319-7. DOI

Alexander W., Williams C.M. Digital Signal Processing: Principles, Algorithms and System Design. Academic Press, Inc.; London, UK: 2016.

Hayes M.H. Statistical Digital Signal Processing and Modeling. John Wiley & Sons; New York, NY, USA: 1996.

Stoica P., Moses R.L. Spectral Analysis of Signals. Volume 452 Pearson Prentice Hall; Upper Saddle River, NJ, USA: 2005.

Mandelbrot B.B. Fractals and Scaling in Finance. Springer; New York, NY, USA: 2013.

Lavielle M. Using penalized contrasts for the change-point problem. Signal Process. 2005;85:1501–1510. doi: 10.1016/j.sigpro.2005.01.012. DOI

Lavielle M., Teyssiere G. Detection of multiple change-points in multivariate time series. Lith. Math. J. 2006;46:287–306. doi: 10.1007/s10986-006-0028-9. DOI

Killick R., Fearnhead P., Eckley I.A. Optimal Detection of Changepoints With a Linear Computational Cost. J. Am. Stat. Assoc. 2011;107:1590–1598. doi: 10.1080/01621459.2012.737745. DOI

MathWorks . Signal Processing Toolbox. Math Works; Natick, MA, USA: 2022. Version: 9.4 (R2022b)

London M., Evans A., Turner M. Fractal Geometry. Elsevier; Amsterdam, The Netherlands: 2002. Why study financial time series? pp. 68–113.

Bouchaud J.P. Power laws in economics and finance: Some ideas from physics. Quant. Financ. 2001;1:105. doi: 10.1080/713665538. DOI

Gopikrishnan P., Plerou V., Nunes Amaral L.A., Meyer M., Stanley H.E. Scaling of the distribution of fluctuations of financial market indices. Phys. Rev. E. 1999;60:5305–5316. doi: 10.1103/PhysRevE.60.5305. PubMed DOI

Cont R., Potters M., Bouchaud J.P. Scaling in stock market data: Stable laws and beyond; Proceedings of the Scale Invariance and Beyond: Les Houches Workshop; Les Houches, France. 10–14 March 1997; Berlin/Heidelberg, Germany: Springer; 1997. pp. 75–85.

Bouchaud J.P., Georges A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990;195:127–293. doi: 10.1016/0370-1573(90)90099-N. DOI

Stuart A., Ord K. Kendall’s Advanced Theory of Statistics, Distribution Theory. Volume 1 John Wiley & Sons; New York, NY, USA: 1994.

Kim K., Yoon S.M. Multifractal features of financial markets. Phys. A Stat. Mech. Its Appl. 2004;344:272–278. doi: 10.1016/j.physa.2004.06.131. DOI

Schmitt F., Schertzer D., Lovejoy S. Multifractal fluctuations in finance. Int. J. Theor. Appl. Financ. 2000;3:361–364. doi: 10.1142/S0219024900000206. DOI

Jiang Z.Q., Xie W.J., Zhou W.X., Sornette D. Multifractal analysis of financial markets: A review. Rep. Prog. Phys. 2019;82:125901. doi: 10.1088/1361-6633/ab42fb. PubMed DOI

Reynolds A.M., Rhodes C.J. The Lévy flight paradigm: Random search patterns and mechanisms. Ecology. 2009;90:877–887. doi: 10.1890/08-0153.1. PubMed DOI

Lundy M.G., Harrison A., Buckley D.J., Boston E.S., Scott D.D., Teeling E.C., Montgomery W.I., Houghton J.D.R. Prey field switching based on preferential behaviour can induce Lévy flights. J. R. Soc. Interface. 2013;10:20120489. doi: 10.1098/rsif.2012.0489. PubMed DOI PMC

Pyke G.H. Understanding movements of organisms: It’s time to abandon the Lévy foraging hypothesis. Methods Ecol. Evol. 2015;6:1–16. doi: 10.1111/2041-210X.12298. DOI

Levernier N., Textor J., Bénichou O., Voituriez R. Inverse Square Lévy Walks are not Optimal Search Strategies for d≥2. Phys. Rev. Lett. 2020;124:080601. doi: 10.1103/PhysRevLett.124.080601. PubMed DOI

Goldberger A.L., Goldberger Z.D., Shvilkin A. Goldberger’s Clinical Electrocardiography. 8th ed. Elsevier; Waltham, MA, USA: 2018. Chapter 2—ECG Basics: Waves, Intervals, and Segments; pp. 6–10. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...