Loading of Silver (I) Ion in L-Cysteine-Functionalized Silica Gel Material for Aquatic Purification

. 2023 Oct 30 ; 9 (11) : . [epub] 20231030

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37998955

The L-cysteine-functionalized silica (SG-Cys-Na+) matrix was effectively loaded with silver (I) ions using the batch sorption technique. Optimal Ag(I) loading into SG-Cys-Na+ reached 98% at pHi = 6, 80 rpm, 1 mg L-1, and a temperature of 55 °C. The Langmuir isotherm was found to be suitable for Ag(I) binding onto SG-Cys-Na+ active sites, forming a homogeneous monolayer (R2 = 0.999), as confirmed by FTIR spectroscopy. XRD analysis indicated matrix stability and the absence of Ag2O and Ag(0) phases, observed from diffraction peaks. The pseudo-second-order model (R2 > 0.999) suggested chemisorption-controlled adsorption, involving chemical bonding between silver ions and SG-Cys-Na+ surface. Thermodynamic parameters were calculated, indicating higher initial concentrations leading to increased equilibrium constants, negative ΔG values, positive ΔS values, and negative ΔH. This study aimed to explore silver ion saturation on silica surfaces and the underlying association mechanisms. The capability to capture and load silver (I) ions onto functionalized silica gel materials holds promise for environmental and water purification applications.

Zobrazit více v PubMed

Lerner N., Meyerstein D., Shamir D., Marks V., Shamish Z., Raz T.O., Maimon E. A chemically modified silica-gel as an ion exchange resin for pre-concentration of actinides and lanthanides. Inorganica Chim. Acta. 2019;486:642–647. doi: 10.1016/j.ica.2018.11.018. DOI

Jal P.K., Patel S., Mishra B.K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta. 2004;62:1005–1028. doi: 10.1016/j.talanta.2003.10.028. PubMed DOI

Cunfeng S., Aifeng Z., Wei S., Hairong J., Dongtao G. Functionalized Silica Nanotubes as Affinity Matrices for Bilirubin Removal. IEEE Trans. Nanotechnol. 2011;10:626–631.

Ghorbanloo M., Monfared H.H., Janiak C. The catalytic function of a silica gel-immobilized Mn(II)-hydrazide complex for alkene epoxidation with H2O2. J. Mol. Catal. A Chem. 2011;345:12–20. doi: 10.1016/j.molcata.2011.05.014. DOI

Bagheri E., Ansari L., Abnous K., Taghdisi S.M., Charbgoo F., Ramezani M., Alibolandi M. Silica-based hybrid materials for drug delivery and bioimaging. J. Control. Release. 2018;277:57–76. doi: 10.1016/j.jconrel.2018.03.014. PubMed DOI

Procaccini R., Bouchet A., Pastore J.I., Studdert C., Ceré S., Pellice S. Silver-functionalized methyl-silica hybrid materials as antibacterial coatings on surgical-grade stainless steel. Prog. Org. Coat. 2016;97:28–36. doi: 10.1016/j.porgcoat.2016.03.012. DOI

Saima N., Afshan U., Uzaira R., Sheryl E. Functionalized mesoporous silica: Absorbents for water purification. Desalination Water Treat. 2016;57:1–11.

Rajendran A., Rajendiran M., Yang Z.F., Fan H.X., Cui T.Y., Zhang Y.G., Li W.Y. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. Chem. Rec. 2020;20:513–540. doi: 10.1002/tcr.201900056. PubMed DOI

Amonette J.E., Matyáš J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review. Microporous Mesoporous Mater. 2017;250:100–119. doi: 10.1016/j.micromeso.2017.04.055. DOI

Maduraiveeran G., Ramaraj R. Silver nanoparticles embedded in functionalized silicate sol-gel network film as an optical sensor for the detection of biomolecules. J. Anal. Chem. 2013;68:241–248. doi: 10.1134/S1061934813030040. DOI

Tolstov A.L., Zinchenko O.V., Matyushov V.F. Sorption of Ag+ Ions by Polyurethanes Modified by Carbamide or Amino Groups. Theor. Exp. Chem. 2015;51:333–338. doi: 10.1007/s11237-015-9434-6. DOI

Li H., Wang M., Li Y., Mo F., Zhu L., Li Z., Xu J., Kong Y., Deng N., Chai R. Adsorption characteristics of silver atoms and silver ions on silica surface in silver nanoparticle hydrosol system. Appl. Surf. Sci. 2021;562:150–168. doi: 10.1016/j.apsusc.2021.150168. DOI

Lihareva N., Dimova L., Petrov O., Tzvetanova Y. Ag+ sorption on natural and Na-exchanged clinoptilolite from Eastern Rhodopes, Bulgaria. Microporous Mesoporous Mater. 2010;130:32–37. doi: 10.1016/j.micromeso.2009.10.009. DOI

Staroń P., Chwastowski J., Banach M. Sorption and desorption studies on silver ions from aqueous solution by coconut fiber. J. Clean. Prod. 2017;149:290–301. doi: 10.1016/j.jclepro.2017.02.116. DOI

Ermakova T., Shaulina L., Kyзнецoвa H., Ratovskii G., Soboleva I., Pozdnyakov A., Galina P. Sorption recovery of noble metal ions with a copolymer of 1-vinyl-1,2,4-triazole with acrylonitrile. Russ. J. Appl. Chem. 2012;85:1289–1295. doi: 10.1134/S1070427212080253. DOI

Constantino L.V., Quirino J.N., Monteiro A.M., Abrão T., Parreira P.S., Urbano A., Santos M.J. Sorption-desorption of selenite and selenate on Mg-Al layered double hydroxide in competition with nitrate, sulfate and phosphate. Chemosphere. 2017;181:627–634. doi: 10.1016/j.chemosphere.2017.04.071. PubMed DOI

Taheri R., Bahramifar N., Zarghami M.R., Javadian H., Mehraban Z. Nanospace engineering and functionalization of MCM-48 mesoporous silica with dendrimer amines based on [1,3,5]-triazines for selective and pH-independent sorption of silver ions from aqueous solution and electroplating industry wastewater. Powder Technol. 2017;321:44–54. doi: 10.1016/j.powtec.2017.08.022. DOI

Bratskaya S., Azarova Y., Matochkina E.G., Kodess M., Yatluk Y., Pestov A. N-(2-(2-pyridyl)ethyl)chitosan: Synthesis, characterization and sorption properties. Carbohydr. Polym. 2012;87:869–875. doi: 10.1016/j.carbpol.2011.08.081. PubMed DOI

Reda L.T., Zhang D. Sorption of metal ions from aqueous solution by sulfonated calix[4]arene intercalated with layered double hydroxide. J. Environ. Chem. Eng. 2019;7:10302. doi: 10.1016/j.jece.2019.103021. DOI

Zhang M., Zhang Y., Helleur R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea–glutaraldehyde. Chem. Eng. J. 2015;264:56–65. doi: 10.1016/j.cej.2014.11.062. DOI

Yun J.-I., Bhattarai S., Yun Y.-S., Lee Y.-S. Synthesis of thiourea-immobilized polystyrene nanoparticles and their sorption behavior with respect to silver ions in aqueous phase. J. Hazard. Mater. 2018;344:398–407. doi: 10.1016/j.jhazmat.2017.10.050. PubMed DOI

Shehzad H., Ahmed E., Sharif A., Din M.I., Farooqi Z.H., Nawaz I., Bano R., Iftikhar M. Amino-carbamate moiety grafted calcium alginate hydrogel beads for effective biosorption of Ag(I) from aqueous solution: Economically-competitive recovery. Int. J. Biol. Macromol. 2020;144:362–372. doi: 10.1016/j.ijbiomac.2019.12.097. PubMed DOI

Kumar P., Ansari K.B., Koli A.C., Gaikar V.G. Sorption Behavior of Thiourea-Grafted Polymeric Resin toward Silver Ion, Reduction to Silver Nanoparticles, and Their Antibacterial Properties. Ind. Eng. Chem. Res. 2013;52:6438–6445. doi: 10.1021/ie3035866. DOI

Losev V.N., Didukh S., Mukhina A., Trofimchuk A. Using silica modified by poly(hexamethylene guanidine) and nitroso-R-salt for the preconcentration and determination of cobalt. J. Anal. Chem. 2015;70:677–684. doi: 10.1134/S1061934815060064. DOI

Kholmogorova A.S., Neudachina L.K., Puzyrev I.S., Pestov A.V. Sorption recovery of transition metals with dithiooxamidated polysiloxane. Russ. J. Appl. Chem. 2014;87:1450–1455. doi: 10.1134/S1070427214100103. DOI

Liao S., Dillon J.T., Huang C., Santos E., Huang Y. Silver (I)-dimercaptotriazine functionalized silica: A highly selective liquid chromatography stationary phase targeting unsaturated molecules. J. Chromatogr. A. 2021;1645:4621–4622. doi: 10.1016/j.chroma.2021.462122. PubMed DOI

Li X.G., Feng H., Huang M.R. Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chemistry. 2010;16:10113–10123. doi: 10.1002/chem.201000506. PubMed DOI

Diaz C., Valenzuela M.L., Garrido D., Aguirre P. Sol-Gel Incorporation of Organometallic Compounds into Silica: Useful Precursors to Metallic Nanostructured Materials. J. Chil. Chem. Soc. 2012;57:2. doi: 10.4067/S0717-97072012000200021. DOI

Jahan S., Salman M., Alias Y.B., Abu Bakar A.F.B., Mansoor F., Kanwal S. Polymer-modified mesoporous silica microcubes (P@MSMCs) for the synergistic oxidative entrapment of Ag(i), Ti(iv), and Zn(ii) from natural river water. Dalton Trans. 2020;49:8265–8273. doi: 10.1039/D0DT01274B. PubMed DOI

Ebrahimzadeh H., Shekari N., Tavassoli N., Amini M.M., Adineh M., Sadeghi O. Extraction of trace amounts of silver on various amino-functionalized nanoporous silicas in real samples. Microchim. Acta. 2010;170:171–178. doi: 10.1007/s00604-010-0395-0. DOI

Völker C., Kämpken I., Boedicker C., Oehlmann J., Oetken M. Toxicity of silver nanoparticles and ionic silver: Comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum. Nanotoxicology. 2015;9:677–685. doi: 10.3109/17435390.2014.963723. PubMed DOI

Przekop E.R., Sztorch B., Zieliński M., Pietrowski M., Marciniak P., Martyla A., Osinska-Broniarz M., Marciniec B. New route to mesoporous silica via a silsesquioxane precursor. Ceram. Silikáty. 2018;62:403–410. doi: 10.13168/cs.2018.0037. DOI

Al-Anber M.A., Hijazi A.K., Al-Momani I.F., Al-Matarneh A.J., Al-Bayed M., Alhalasah W. Impregnation of Benzyl-L-cysteine into silica gel for the removal of cadmium(II) ion from water. J. Sol Gel Sci. Technol. 2023;106:246–264. doi: 10.1007/s10971-022-06027-0. DOI

Hosseinpour-Mashkani S.M., Ramezani M. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition. Mater. Lett. 2014;130:259–262. doi: 10.1016/j.matlet.2014.05.133. DOI

Zhang Z., Liu X., Wang K., Niu Y., Chen H., Bai L., Xue Z. Removal of Ag(I) from aqueous solution by thiourea-functionalized silica gel: Experimental and theoretical study. Desalination Water Treat. 2019;151:307–314. doi: 10.5004/dwt.2019.23916. DOI

Vusumzi E., Pakade N.T.T., Madikizelac L.M. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv. 2019;9261:42. PubMed PMC

Naseem K., Farooqi Z., Begum R., Rehman M., Shahbaz A., Farooq U., Ali M., Rahman H., Irfan A., Al-Sehemi A. Removal of Cadmium(II) from aqueous medium using vigna radiata leave biomass: Equilibrium isotherms, kinetics and thermodynamics. Z. Für Phys. Chem. 2019;233:669–690. doi: 10.1515/zpch-2018-1223. DOI

Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–465. doi: 10.1016/S0032-9592(98)00112-5. DOI

Lagergren S. About the theory of so-called adsorption of soluble substances. K. Sven Vetenskapsakademiens Handl. 1898;24:1–39.

Langmuir I. The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI

Freundlich H.M.F. Uber Die Adsorption in Losungen. Z. Fur Phys. Chem. 1906;57A:385. doi: 10.1515/zpch-1907-5723. DOI

Cooper A. Van’t Hoff Analysis and Hidden Thermodynamic Variables. In: Roberts G., Watts A., editors. Encyclopedia of Biophysics. Springer; Berlin/Heidelberg, Germany: 2018.

Herman P., Pércsi D., Fodor T., Juhász L., Dudás Z., Horváth Z.E., Ryukhtin V., Putz A.-M., Kalmár J., Almásy L. Selective and high capacity recovery of aqueous Ag(I) by thiol functionalized mesoporous silica sorbent. J. Molecul. Liq. 2023;387:122598. doi: 10.1016/j.molliq.2023.122598. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...