Loading of Silver (I) Ion in L-Cysteine-Functionalized Silica Gel Material for Aquatic Purification
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37998955
PubMed Central
PMC10670454
DOI
10.3390/gels9110865
PII: gels9110865
Knihovny.cz E-zdroje
- Klíčová slova
- L-cysteine, Langmuir isotherm, silica gel, silver (I) Ion, thermodynamic parameters,
- Publikační typ
- časopisecké články MeSH
The L-cysteine-functionalized silica (SG-Cys-Na+) matrix was effectively loaded with silver (I) ions using the batch sorption technique. Optimal Ag(I) loading into SG-Cys-Na+ reached 98% at pHi = 6, 80 rpm, 1 mg L-1, and a temperature of 55 °C. The Langmuir isotherm was found to be suitable for Ag(I) binding onto SG-Cys-Na+ active sites, forming a homogeneous monolayer (R2 = 0.999), as confirmed by FTIR spectroscopy. XRD analysis indicated matrix stability and the absence of Ag2O and Ag(0) phases, observed from diffraction peaks. The pseudo-second-order model (R2 > 0.999) suggested chemisorption-controlled adsorption, involving chemical bonding between silver ions and SG-Cys-Na+ surface. Thermodynamic parameters were calculated, indicating higher initial concentrations leading to increased equilibrium constants, negative ΔG values, positive ΔS values, and negative ΔH. This study aimed to explore silver ion saturation on silica surfaces and the underlying association mechanisms. The capability to capture and load silver (I) ions onto functionalized silica gel materials holds promise for environmental and water purification applications.
Department of Chemistry Faculty of Sciences Yarmouk University Irbid 21163 Jordan
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 61662 Brno Czech Republic
Nanotechnology and Catalysis Research Centre University of Malaya Kuala Lumpur 50603 Malaysia
Zobrazit více v PubMed
Lerner N., Meyerstein D., Shamir D., Marks V., Shamish Z., Raz T.O., Maimon E. A chemically modified silica-gel as an ion exchange resin for pre-concentration of actinides and lanthanides. Inorganica Chim. Acta. 2019;486:642–647. doi: 10.1016/j.ica.2018.11.018. DOI
Jal P.K., Patel S., Mishra B.K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta. 2004;62:1005–1028. doi: 10.1016/j.talanta.2003.10.028. PubMed DOI
Cunfeng S., Aifeng Z., Wei S., Hairong J., Dongtao G. Functionalized Silica Nanotubes as Affinity Matrices for Bilirubin Removal. IEEE Trans. Nanotechnol. 2011;10:626–631.
Ghorbanloo M., Monfared H.H., Janiak C. The catalytic function of a silica gel-immobilized Mn(II)-hydrazide complex for alkene epoxidation with H2O2. J. Mol. Catal. A Chem. 2011;345:12–20. doi: 10.1016/j.molcata.2011.05.014. DOI
Bagheri E., Ansari L., Abnous K., Taghdisi S.M., Charbgoo F., Ramezani M., Alibolandi M. Silica-based hybrid materials for drug delivery and bioimaging. J. Control. Release. 2018;277:57–76. doi: 10.1016/j.jconrel.2018.03.014. PubMed DOI
Procaccini R., Bouchet A., Pastore J.I., Studdert C., Ceré S., Pellice S. Silver-functionalized methyl-silica hybrid materials as antibacterial coatings on surgical-grade stainless steel. Prog. Org. Coat. 2016;97:28–36. doi: 10.1016/j.porgcoat.2016.03.012. DOI
Saima N., Afshan U., Uzaira R., Sheryl E. Functionalized mesoporous silica: Absorbents for water purification. Desalination Water Treat. 2016;57:1–11.
Rajendran A., Rajendiran M., Yang Z.F., Fan H.X., Cui T.Y., Zhang Y.G., Li W.Y. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. Chem. Rec. 2020;20:513–540. doi: 10.1002/tcr.201900056. PubMed DOI
Amonette J.E., Matyáš J. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review. Microporous Mesoporous Mater. 2017;250:100–119. doi: 10.1016/j.micromeso.2017.04.055. DOI
Maduraiveeran G., Ramaraj R. Silver nanoparticles embedded in functionalized silicate sol-gel network film as an optical sensor for the detection of biomolecules. J. Anal. Chem. 2013;68:241–248. doi: 10.1134/S1061934813030040. DOI
Tolstov A.L., Zinchenko O.V., Matyushov V.F. Sorption of Ag+ Ions by Polyurethanes Modified by Carbamide or Amino Groups. Theor. Exp. Chem. 2015;51:333–338. doi: 10.1007/s11237-015-9434-6. DOI
Li H., Wang M., Li Y., Mo F., Zhu L., Li Z., Xu J., Kong Y., Deng N., Chai R. Adsorption characteristics of silver atoms and silver ions on silica surface in silver nanoparticle hydrosol system. Appl. Surf. Sci. 2021;562:150–168. doi: 10.1016/j.apsusc.2021.150168. DOI
Lihareva N., Dimova L., Petrov O., Tzvetanova Y. Ag+ sorption on natural and Na-exchanged clinoptilolite from Eastern Rhodopes, Bulgaria. Microporous Mesoporous Mater. 2010;130:32–37. doi: 10.1016/j.micromeso.2009.10.009. DOI
Staroń P., Chwastowski J., Banach M. Sorption and desorption studies on silver ions from aqueous solution by coconut fiber. J. Clean. Prod. 2017;149:290–301. doi: 10.1016/j.jclepro.2017.02.116. DOI
Ermakova T., Shaulina L., Kyзнецoвa H., Ratovskii G., Soboleva I., Pozdnyakov A., Galina P. Sorption recovery of noble metal ions with a copolymer of 1-vinyl-1,2,4-triazole with acrylonitrile. Russ. J. Appl. Chem. 2012;85:1289–1295. doi: 10.1134/S1070427212080253. DOI
Constantino L.V., Quirino J.N., Monteiro A.M., Abrão T., Parreira P.S., Urbano A., Santos M.J. Sorption-desorption of selenite and selenate on Mg-Al layered double hydroxide in competition with nitrate, sulfate and phosphate. Chemosphere. 2017;181:627–634. doi: 10.1016/j.chemosphere.2017.04.071. PubMed DOI
Taheri R., Bahramifar N., Zarghami M.R., Javadian H., Mehraban Z. Nanospace engineering and functionalization of MCM-48 mesoporous silica with dendrimer amines based on [1,3,5]-triazines for selective and pH-independent sorption of silver ions from aqueous solution and electroplating industry wastewater. Powder Technol. 2017;321:44–54. doi: 10.1016/j.powtec.2017.08.022. DOI
Bratskaya S., Azarova Y., Matochkina E.G., Kodess M., Yatluk Y., Pestov A. N-(2-(2-pyridyl)ethyl)chitosan: Synthesis, characterization and sorption properties. Carbohydr. Polym. 2012;87:869–875. doi: 10.1016/j.carbpol.2011.08.081. PubMed DOI
Reda L.T., Zhang D. Sorption of metal ions from aqueous solution by sulfonated calix[4]arene intercalated with layered double hydroxide. J. Environ. Chem. Eng. 2019;7:10302. doi: 10.1016/j.jece.2019.103021. DOI
Zhang M., Zhang Y., Helleur R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea–glutaraldehyde. Chem. Eng. J. 2015;264:56–65. doi: 10.1016/j.cej.2014.11.062. DOI
Yun J.-I., Bhattarai S., Yun Y.-S., Lee Y.-S. Synthesis of thiourea-immobilized polystyrene nanoparticles and their sorption behavior with respect to silver ions in aqueous phase. J. Hazard. Mater. 2018;344:398–407. doi: 10.1016/j.jhazmat.2017.10.050. PubMed DOI
Shehzad H., Ahmed E., Sharif A., Din M.I., Farooqi Z.H., Nawaz I., Bano R., Iftikhar M. Amino-carbamate moiety grafted calcium alginate hydrogel beads for effective biosorption of Ag(I) from aqueous solution: Economically-competitive recovery. Int. J. Biol. Macromol. 2020;144:362–372. doi: 10.1016/j.ijbiomac.2019.12.097. PubMed DOI
Kumar P., Ansari K.B., Koli A.C., Gaikar V.G. Sorption Behavior of Thiourea-Grafted Polymeric Resin toward Silver Ion, Reduction to Silver Nanoparticles, and Their Antibacterial Properties. Ind. Eng. Chem. Res. 2013;52:6438–6445. doi: 10.1021/ie3035866. DOI
Losev V.N., Didukh S., Mukhina A., Trofimchuk A. Using silica modified by poly(hexamethylene guanidine) and nitroso-R-salt for the preconcentration and determination of cobalt. J. Anal. Chem. 2015;70:677–684. doi: 10.1134/S1061934815060064. DOI
Kholmogorova A.S., Neudachina L.K., Puzyrev I.S., Pestov A.V. Sorption recovery of transition metals with dithiooxamidated polysiloxane. Russ. J. Appl. Chem. 2014;87:1450–1455. doi: 10.1134/S1070427214100103. DOI
Liao S., Dillon J.T., Huang C., Santos E., Huang Y. Silver (I)-dimercaptotriazine functionalized silica: A highly selective liquid chromatography stationary phase targeting unsaturated molecules. J. Chromatogr. A. 2021;1645:4621–4622. doi: 10.1016/j.chroma.2021.462122. PubMed DOI
Li X.G., Feng H., Huang M.R. Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chemistry. 2010;16:10113–10123. doi: 10.1002/chem.201000506. PubMed DOI
Diaz C., Valenzuela M.L., Garrido D., Aguirre P. Sol-Gel Incorporation of Organometallic Compounds into Silica: Useful Precursors to Metallic Nanostructured Materials. J. Chil. Chem. Soc. 2012;57:2. doi: 10.4067/S0717-97072012000200021. DOI
Jahan S., Salman M., Alias Y.B., Abu Bakar A.F.B., Mansoor F., Kanwal S. Polymer-modified mesoporous silica microcubes (P@MSMCs) for the synergistic oxidative entrapment of Ag(i), Ti(iv), and Zn(ii) from natural river water. Dalton Trans. 2020;49:8265–8273. doi: 10.1039/D0DT01274B. PubMed DOI
Ebrahimzadeh H., Shekari N., Tavassoli N., Amini M.M., Adineh M., Sadeghi O. Extraction of trace amounts of silver on various amino-functionalized nanoporous silicas in real samples. Microchim. Acta. 2010;170:171–178. doi: 10.1007/s00604-010-0395-0. DOI
Völker C., Kämpken I., Boedicker C., Oehlmann J., Oetken M. Toxicity of silver nanoparticles and ionic silver: Comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum. Nanotoxicology. 2015;9:677–685. doi: 10.3109/17435390.2014.963723. PubMed DOI
Przekop E.R., Sztorch B., Zieliński M., Pietrowski M., Marciniak P., Martyla A., Osinska-Broniarz M., Marciniec B. New route to mesoporous silica via a silsesquioxane precursor. Ceram. Silikáty. 2018;62:403–410. doi: 10.13168/cs.2018.0037. DOI
Al-Anber M.A., Hijazi A.K., Al-Momani I.F., Al-Matarneh A.J., Al-Bayed M., Alhalasah W. Impregnation of Benzyl-L-cysteine into silica gel for the removal of cadmium(II) ion from water. J. Sol Gel Sci. Technol. 2023;106:246–264. doi: 10.1007/s10971-022-06027-0. DOI
Hosseinpour-Mashkani S.M., Ramezani M. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition. Mater. Lett. 2014;130:259–262. doi: 10.1016/j.matlet.2014.05.133. DOI
Zhang Z., Liu X., Wang K., Niu Y., Chen H., Bai L., Xue Z. Removal of Ag(I) from aqueous solution by thiourea-functionalized silica gel: Experimental and theoretical study. Desalination Water Treat. 2019;151:307–314. doi: 10.5004/dwt.2019.23916. DOI
Vusumzi E., Pakade N.T.T., Madikizelac L.M. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv. 2019;9261:42. PubMed PMC
Naseem K., Farooqi Z., Begum R., Rehman M., Shahbaz A., Farooq U., Ali M., Rahman H., Irfan A., Al-Sehemi A. Removal of Cadmium(II) from aqueous medium using vigna radiata leave biomass: Equilibrium isotherms, kinetics and thermodynamics. Z. Für Phys. Chem. 2019;233:669–690. doi: 10.1515/zpch-2018-1223. DOI
Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–465. doi: 10.1016/S0032-9592(98)00112-5. DOI
Lagergren S. About the theory of so-called adsorption of soluble substances. K. Sven Vetenskapsakademiens Handl. 1898;24:1–39.
Langmuir I. The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI
Freundlich H.M.F. Uber Die Adsorption in Losungen. Z. Fur Phys. Chem. 1906;57A:385. doi: 10.1515/zpch-1907-5723. DOI
Cooper A. Van’t Hoff Analysis and Hidden Thermodynamic Variables. In: Roberts G., Watts A., editors. Encyclopedia of Biophysics. Springer; Berlin/Heidelberg, Germany: 2018.
Herman P., Pércsi D., Fodor T., Juhász L., Dudás Z., Horváth Z.E., Ryukhtin V., Putz A.-M., Kalmár J., Almásy L. Selective and high capacity recovery of aqueous Ag(I) by thiol functionalized mesoporous silica sorbent. J. Molecul. Liq. 2023;387:122598. doi: 10.1016/j.molliq.2023.122598. DOI