Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak

. 2024 Apr ; 29 (3-4) : 424-438. [epub] 20231124

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38001340

Grantová podpora
GA19-08772S Czech Science Foundation
GX21-04607X Czech Science Foundation
86652036 Institute of Biotechnology
LM2023050 Ministry of Education, Youth and Sports of the Czech Republic
L200392251 Czech Academy of Sciences
NU21-03-00386 Ministry of Health of the Czech Republic

Odkazy

PubMed 38001340
DOI 10.1007/s10495-023-01917-2
PII: 10.1007/s10495-023-01917-2
Knihovny.cz E-zdroje

Proteins from the Bcl-2 family play an essential role in the regulation of apoptosis. However, they also possess cell death-unrelated activities that are less well understood. This prompted us to study apoptosis-unrelated activities of the Bax and Bak, pro-apoptotic members of the Bcl-2 family. We prepared Bax/Bak-deficient human cancer cells of different origin and found that while respiration in the glioblastoma U87 Bax/Bak-deficient cells was greatly enhanced, respiration of Bax/Bak-deficient B lymphoma HBL-2 cells was slightly suppressed. Bax/Bak-deficient U87 cells also proliferated faster in culture, formed tumours more rapidly in mice, and showed modulation of metabolism with a considerably increased NAD+/NADH ratio. Follow-up analyses documented increased/decreased expression of mitochondria-encoded subunits of respiratory complexes and stabilization/destabilization of the mitochondrial transcription elongation factor TEFM in Bax/Bak-deficient U87 and HBL-2 cells, respectively. TEFM downregulation using shRNAs attenuated mitochondrial respiration in Bax/Bak-deficient U87 as well as in parental HBL-2 cells. We propose that (post)translational regulation of TEFM levels in Bax/Bak-deficient cells modulates levels of subunits of mitochondrial respiratory complexes that, in turn, contribute to respiration and the accompanying changes in metabolism and proliferation in these cells.

Zobrazit více v PubMed

Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257 PubMed PMC

Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911 PubMed

Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80 PubMed

Hardwick JM, Soane L (2013) Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect biol. https://doi.org/10.1101/cshperspect.a008722 PubMed DOI PMC

Gross A, Katz SG (2017) Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ 24:1348–1358 PubMed PMC

Morris JL, Gillet G, Prudent J, Popgeorgiev N (2021) Bcl-2 family of proteins in the control of mitochondrial calcium signalling: An old chap with new roles. Int J Mol Sci. https://doi.org/10.3390/ijms22073730 PubMed DOI PMC

Chong SJF, Marchi S, Petroni G, Kroemer G, Galluzzi L, Pervaiz S (2020) Noncanonical cell fate regulation by Bcl-2 proteins. Trends Cell Biol 30:537–555 PubMed

Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285:13678–13684 PubMed PMC

White C, Li C, Yang J et al (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028 PubMed PMC

Nutt LK, Pataer A, Pahler J et al (2002) Bax and bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277:9219–9225 PubMed

Zong WX, Li C, Hatzivassiliou G et al (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69 PubMed PMC

Oakes SA, Scorrano L, Opferman JT et al (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102:105–110 PubMed

Hirata H, Lopes GS, Jurkiewicz A, Garcez-do-Carmo L, Smaili SS (2012) Bcl-2 modulates endoplasmic reticulum and mitochondrial calcium stores in PC12 cells. Neurochem Res 37:238–243 PubMed

Carvalho AC, Sharpe J, Rosenstock TR, Teles AF, Youle RJ, Smaili SS (2004) Bax affects intracellular Ca2+ stores and induces Ca2+ wave propagation. Cell Death Differ 11:1265–1276 PubMed

Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663 PubMed

Brooks C, Wei Q, Feng L et al (2007) Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci USA 104:11649–11654 PubMed PMC

Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443:658–662 PubMed

Um HD (2016) Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: a review focusing on mitochondrial respiration and reactive oxygen species. Oncotarget 7:5193–5203 PubMed

Chen ZX, Pervaiz S (2007) Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ 14:1617–1627 PubMed

Eliseev RA, Malecki J, Lester T, Zhang Y, Humphrey J, Gunter TE (2009) Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect. J Biol Chem 284:9692–9699 PubMed PMC

Chen ZX, Pervaiz S (2010) Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ 17:408–420 PubMed

Lagadinou ED, Sach A, Callahan K et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12:329–341 PubMed PMC

Kane DJ, Sarafian TA, Anton R et al (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262:1274–1277 PubMed

Imahashi K, Schneider MD, Steenbergen C, Murphy E (2004) Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circul Res 95:734–741

Alavian KN, Li H, Collis L et al (2011) Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol 13:1224–1233 PubMed PMC

Li M, Wang D, He J, Chen L, Li H (2020) Bcl-XL: a multifunctional anti-apoptotic protein. Pharmacol Res 151:104547 PubMed

Chen YB, Aon MA, Hsu YT et al (2011) Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J Cell Biol 195:263–276 PubMed PMC

Lucantoni F, Salvucci M, Düssmann H, Lindner AU, Lambrechts D, Prehn JHM (2021) BCL(X)L and BCL2 increase the metabolic fitness of breast cancer cells: a single-cell imaging study. Cell Death Differ 28:1512–1531 PubMed

Lee KM, Giltnane JM, Balko JM et al (2017) MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metabol 26:633-647e637

Carter BZ, Mak PY, Tao W et al (2022) Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition. Haematologica 107:58–76 PubMed

Huang CR, Yang-Yen HF (2010) The fast-mobility isoform of mouse Mcl-1 is a mitochondrial matrix-localized protein with attenuated anti-apoptotic activity. FEBS Lett 584:3323–3330 PubMed

Perciavalle RM, Stewart DP, Koss B et al (2012) Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 14:575–583 PubMed PMC

Wang X, Bathina M, Lynch J et al (2013) Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev 27:1351–1364 PubMed PMC

Boohaker RJ, Zhang G, Carlson AL, Nemec KN, Khaled AR (2011) BAX supports the mitochondrial network, promoting bioenergetics in nonapoptotic cells. Am J Physiol Cell Physiol 300:C1466-1478 PubMed PMC

Kim EM, Park JK, Hwang SG et al (2014) Nuclear and cytoplasmic p53 suppress cell invasion by inhibiting respiratory complex-I activity via Bcl-2 family proteins. Oncotarget 5:8452–8465 PubMed PMC

Kim EM, Jung CH, Song JY, Park JK, Um HD (2018) Pro-apoptotic Bax promotes mesenchymal-epithelial transition by binding to respiratory complex-I and antagonizing the malignant actions of pro-survival Bcl-2 proteins. Cancer Lett 424:127–135 PubMed

Vercellino I, Sazanov LA (2022) The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 23:141–161 PubMed

Tan AS, Baty JW, Dong LF et al (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metabol 21:81–94

Chiu HY, Loh AHP, Taneja R (2022) Mitochondrial calcium uptake regulates tumour progression in embryonal rhabdomyosarcoma. Cell Death Dis 13:419 PubMed PMC

Lindsten T, Ross AJ, King A et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399 PubMed PMC

Scorrano L, Oakes SA, Opferman JT et al (2003) Bax and bak regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139 PubMed

Brayer S, Joannes A, Jaillet M et al (2017) The pro-apoptotic bax protein influences cell growth and differentiation from the nucleus in healthy interphasic cells. Cell Cycle 16:2108–2118 PubMed PMC

Wang C, Youle RJ (2012) Predominant requirement of bax for apoptosis in HCT116 cells is determined by Mcl-1’s inhibitory effect on bak. Oncogene 31:3177–3189 PubMed

Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290:989–992 PubMed

Deng J, Gutierrez LG, Stoll G et al (2021) Paradoxical implication of BAX/BAK in the persistence of tetraploid cells. Cell Death Dis 12:1039 PubMed PMC

Bomba-Warczak E, Edassery SL, Hark TJ, Savas JN (2021) Long-lived mitochondrial cristae proteins in mouse heart and brain. J Cell Biol. https://doi.org/10.1083/jcb.202005193 PubMed DOI PMC

Takeuchi A, Kim B, Matsuoka S (2015) The destiny of ca(2+) released by mitochondria. J Physiol Sci 65:11–24 PubMed

Minczuk M, He J, Duch AM et al (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res 39:4284–4299 PubMed PMC

Hillen HS, Parshin AV, Agaronyan K et al (2017) Mechanism of transcription anti-termination in human mitochondria. Cell 171:1082–1093 PubMed PMC

Posse V, Shahzad S, Falkenberg M, Hallberg BM, Gustafsson CM (2015) TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Nucleic Acids Res 43:2615–2624 PubMed PMC

Yu H, Xue C, Long M et al (2018) TEFM enhances transcription elongation by modifying mtRNAP Pausing dynamics. Biophys J 115:2295–2300 PubMed PMC

Jiang S, Koolmeister C, Misic J et al (2019) TEFM regulates both transcription elongation and RNA processing in mitochondria. EMBO Rep 20:e48101 PubMed PMC

Fei ZY, Wang WS, Li SF et al (2020) High expression of the TEFM gene predicts poor prognosis in hepatocellular carcinoma. J Gastrointest Oncol 11:1291–1304 PubMed PMC

Li S, Wang W, Zi J et al (2020) Elevated expression of mitochondrial transcription elongation factor (TEFM) predicts poor prognosis in low grade glioma-an analysis of the cancer genome atlas (TCGA) dataset. Transl Cancer Res 9:3610–3622 PubMed PMC

Wan L, Wang Y, Zhang Z et al (2021) Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis 12:325 PubMed PMC

Van Haute L, O’Connor E, Diaz-Maldonado H et al (2023) TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease. Nat Commun 14:1009 PubMed PMC

Eischen CM, Rehg JE, Korsmeyer SJ, Cleveland JL (2002) Loss of bax alters tumor spectrum and tumor numbers in ARF-deficient mice. Cancer Res 62:2184–2191 PubMed

Mrozek A, Petrowsky H, Sturm I et al (2003) Combined p53/Bax mutation results in extremely poor prognosis in gastric carcinoma with low microsatellite instability. Cell Death Differ 10:461–467 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...