New Spectroelectrochemical Insights into Manganese and Rhenium Bipyridine Complexes as Catalysts for the Electrochemical Reduction of Carbon Dioxide
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022FWAF2M
PNRR MOST@UNITO project and the CADIVAPE PRIN project
Progetto Competitivo 2020 CMPT200224
CIRCC
RVO: 61388955
Czech Academy of Sciences
PubMed
38005257
PubMed Central
PMC10673266
DOI
10.3390/molecules28227535
PII: molecules28227535
Knihovny.cz E-zdroje
- Klíčová slova
- CO2, carbon dioxide reduction, manganese, rhenium, spectroelectrochemistry,
- Publikační typ
- časopisecké články MeSH
This study aimed to demonstrate the behavior of different complexes using IR spectroelectrochemistry (SEC), a technique that combines IR spectroscopy with electrochemistry. Four different Mn and Re catalysts for electrochemical CO2 reduction were studied in dry acetonitrile. In the case of Mn(apbpy)(CO)3Br (apbpy = 4(4-aminophenyl)-2,2'-bipyridine), SEC suggested that a very slow catalytic reduction of CO2 also occurs in acetonitrile in the absence of proton donors, but at rather negative potentials. In contrast, the corresponding Re(apbpy)(CO)3Br clearly demonstrated slow catalytic conversion at the first reduction potential. Switching to saturated CO2 solutions in a mixture of acetonitrile and 5% water as a proton donor, the SEC of Mn(apbpy)(CO)3Br displayed a faster catalytic behavior.
Chemistry Division Brookhaven National Laboratory Upton NY 11973 5000 USA
CIRCC Via Celso Ulpiani 27 70126 Bari Italy
Department of Chemistry University of Torino Via P Giuria 7 10125 Torino Italy
Zobrazit více v PubMed
Rotundo L., Gobetto R., Nervi C. Electrochemical CO2 reduction with earth-abundant metal catalysts. Curr. Opin. Green Sust. Chem. 2021;31:100509. doi: 10.1016/j.cogsc.2021.100509. DOI
Aresta M., Dibenedetto A., Angelini A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014;114:1709–1742. doi: 10.1021/cr4002758. PubMed DOI
Tang B., Xiao F.-X. An overview of solar-driven photoelectrochemical CO2 conversion to chemical fuels. ACS Catal. 2022;12:9023–9057. doi: 10.1021/acscatal.2c01667. DOI
Cheon J., Yang J.Y., Koper M., Ishitani O. From Pollutant to Chemical Feedstock: Valorizing Carbon Dioxide through Photo-and Electrochemical Processes. Acc. Chem. Res. 2022;55:931–932. doi: 10.1021/acs.accounts.2c00129. PubMed DOI
Chen C., Jin B.-K. FTIR Spectroelectrochemistry Study on the Reduction of CO2 at a Gold Electrode Interface. Chin. J. Inorg. Chem. 2012;28:541–545.
Hartl F., Aarnts M.P., Peelen K. Infrared Spectroelectrochemical Investigation of Carbon Dioxide Reduction Mediated by the Anion [Ru (SnPh3)(Co)2(iPr-DAB)]-(iPr-DAB= N,N′-Diisopropyl-1,4-diaza-1,3-butadiene) Coll. Czech. Chem. Comm. 1996;61:1342–1352. doi: 10.1135/cccc19961342. DOI
Breelove B.K., Takayama D., Ito T. Synthesis of an electron pooling ligand based on triruthenium clusters and electrochemical reduction of CO2 by its zinc(II)complex. Chem. Lett. 2004;33:1624–1625. doi: 10.1246/cl.2004.1624. DOI
Behnke S.L., Manesis A.C., Shafaat H.S. Spectroelectrochemical investigations of nickel cyclam indicate different reaction mechanisms for electrocatalytic CO2 and H+ reduction. Dalton Trans. 2018;47:15206–15216. doi: 10.1039/C8DT02873G. PubMed DOI
Polyansky D.E., Grills D.C., Ertem M.Z., Ngo K.T., Fujita E. Role of Bimetallic Interactions in the Enhancement of Catalytic CO2 Reduction by a Macrocyclic Cobalt Catalyst. ACS Catal. 2022;12:1706–1717. doi: 10.1021/acscatal.1c05043. DOI
Johnson F.P.A., George M.W., Hartl F., Turner J.J. Electrocatalytic Reduction of CO2 Using the Complexes [Re (bpy)(CO)3L] n (n=+ 1, L= P (OEt)3, CH3CN; n= 0, L= Cl-, Otf-; bpy= 2,2‘-Bipyridine; Otf-= CF3SO3) as Catalyst Precursors: Infrared Spectroelectrochemical Investigation. Organometallics. 1996;15:3374–3387. doi: 10.1021/om960044+. DOI
Neri G., Donaldsonb P.M., Cowan A.J. In situ study of the low overpotential “dimer pathway” for electrocatalytic carbon dioxide reduction by manganese carbonyl complexes. Phys. Chem. Chem. Phys. 2019;21:7389–7397. doi: 10.1039/C9CP00504H. PubMed DOI
Filippi J., Rotundo L., Gobetto R., Miller H.A., Nervi C., Lavacchi A., Vizza F. Turning manganese into gold: Efficient electrochemical CO2 reduction by a fac-Mn (apbpy)(CO)3Br complex in a gas–liquid interface flow cell. Chem. Eng. J. 2021;416:129050. doi: 10.1016/j.cej.2021.129050. DOI
Rotundo L., Filippi J., Gobetto R., Miller H.A., Rocca R., Nervi C., Vizza F. Electrochemical CO2 reduction in water at carbon cloth electrodes functionalized with a fac-Mn (apbpy)(CO)3 Br complex. Chem. Commun. 2019;55:775–777. doi: 10.1039/C8CC08385A. PubMed DOI
Rotundo L., Garino C., Priola E., Sassone D., Rao H., Ma B., Robert M., Fiedler J., Gobetto R., Nervi C. Electrochemical and photochemical reduction of CO2 catalyzed by Re(I)complexes carrying local proton sources. Organometallics. 2019;38:1351–1360. doi: 10.1021/acs.organomet.8b00588. DOI
Sun C., Rotundo L., Garino C., Nencini L., Yoon S.S., Gobetto R., Nervi C. Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. ChemPhysChem. 2017;18:3219–3229. doi: 10.1002/cphc.201700739. PubMed DOI
Rotundo L., Azzi E., Deagostino A., Garino C., Nencini L., Priola E., Quagliotto P., Rocca R., Gobetto R., Nervi C. Electronic effects of substituents on fac-M (bpy-R)(CO)3(M = Mn, Re) complexes for homogeneous CO2 electroreduction. Front. Chem. 2019;7:417. doi: 10.3389/fchem.2019.00417. PubMed DOI PMC
Bourrez M., Molton F., Chardon-Noblat S., Deronzier A. [Mn (bipyridyl)(CO)3Br]: An abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew. Chem. Int. Ed. 2011;50:9903–9906. doi: 10.1002/anie.201103616. PubMed DOI
Franco F., Cometto C., Garino C., Minero C., Sordello F., Nervi C., Gobetto R. Photo-and Electrocatalytic Reduction of CO2 by [Re (CO)3{α,α′-Diimine-(4-piperidinyl-1,8-naphthalimide)}Cl] Complexes. Eur. J. Inorg. Chem. 2015;2015:296–304. doi: 10.1002/ejic.201402912. DOI
Taylor J.O., Neri G., Banerji L., Cowan A.J., Hartl F. Strong impact of intramolecular hydrogen bonding on the cathodic path of [Re (3,3′-dihydroxy-2, 2′-bipyridine)(CO)3Cl] and catalytic reduction of carbon dioxide. Inorg. Chem. 2020;59:5564–5578. doi: 10.1021/acs.inorgchem.0c00263. PubMed DOI PMC
Madsen M.R., Rønne M.H., Heuschen M., Golo D., Ahlquist M.S.G., Skrydstrup T., Pedersen S.U., Daasbjerg K. Promoting selective generation of formic acid from CO2 using Mn (bpy)(CO)3Br as electrocatalyst and triethylamine/isopropanol as additives. J. Am. Chem. Soc. 2021;143:20491–20500. doi: 10.1021/jacs.1c10805. PubMed DOI
Franco F., Cometto C., Nencini L., Barolo C., Sordello F., Minero C., Fiedler J., Robert M., Gobetto R., Nervi C. Local proton source in electrocatalytic CO2 reduction with [Mn (bpy–R)(CO)3Br] complexes. Chem. Eur. J. 2017;23:4782–4793. doi: 10.1002/chem.201605546. PubMed DOI
Rønne M.H., Cho D., Madsen M.R., Jakobsen J.B., Eom S., Escoudé É., Hammershøj H.C.D., Nielsen D.U., Pedersen S.U., Baik M.-H., et al. Ligand-controlled product selectivity in electrochemical carbon dioxide reduction using manganese bipyridine catalysts. J. Am. Chem. Soc. 2020;142:4265–4275. doi: 10.1021/jacs.9b11806. PubMed DOI
Rønne M.H., Madsen M.R., Skrydstrup T., Pedersen S.U., Daasbjerg K. Mechanistic Elucidation of Dimer Formation and Strategies for Its Suppression in Electrochemical Reduction of Fac-Mn (bpy)(CO)3Br. ChemElectroChem. 2021;8:2108–2114. doi: 10.1002/celc.202100279. DOI
Madsen M.R., Jakobsen J.B., Rønne M.H., Liang H., Hammershøj H.C.D., Nørby P., Pedersen S.U., Skrydstrup T., Daasbjerg K. Evaluation of the electrocatalytic reduction of carbon dioxide using rhenium and ruthenium bipyridine catalysts bearing pendant amines in the secondary coordination sphere. Organometallics. 2020;39:1480–1490. doi: 10.1021/acs.organomet.9b00815. DOI
Stor G.J., Hartl F., van Outersterp J.W.M., Stufkens D.J. Spectroelectrochemical (IR, UV/Vis) Determination of the Reduction Pathways for a Series of [Re(CO)3(.alpha.-diimine)L′]0/+ (L′ = Halide, OTf-, THF, MeCN, n-PrCN, PPh3, P(OMe)3) Complexes. Organometallics. 1995;14:1115–1131. doi: 10.1021/om00003a013. DOI
Sampson M.D., Nguyen A.D., Grice K.A., Moore C.E., Rheingold A.L., Kubiak C.P. Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: Eliminating dimerization and altering catalysis. J. Am. Chem. Soc. 2014;136:5460–5471. doi: 10.1021/ja501252f. PubMed DOI
Machan C.W., Sampson M.D., Chabolla S.A., Dang T., Kubiak C.P. Developing a Mechanistic Understanding of Molecular Electrocatalysts for CO2 Reduction using Infrared Spectroelectrochemistry. Organometallics. 2014;33:4550–4559. doi: 10.1021/om500044a. DOI
Clark M.L., Grice K.A., Moore C.E., Rheingold A.L., Kubiak C.P. Reduction by M (bpy-R)(CO)4 (M = Mo, W; R = H, tBu) complexes. Electrochemical, spectroscopic, and computational studies and comparison with group 7 catalysts. Chem. Sci. 2014;5:1894–1900. doi: 10.1039/C3SC53470G. DOI
Cheng S.C., Blaine C.A., Hill M.G., Mann K.R. Electrochemical and IR spectroelectrochemical studies of the electrocatalytic reduction of carbon dioxide by [Ir2(dimen)4]2+ (dimen = 1,8-Diisocyanomenthane) Inorg. Chem. 1996;35:7704–7708. doi: 10.1021/ic9512385. DOI
Johansson O., Borgström M., Lomoth R., Palmblad M., Bergquist J., Hammarström L., Sun L., Åkermark B. Electron Donor–Acceptor Dyads Based on Ruthenium (II) Bipyridine and Terpyridine Complexes Bound to Naphthalenediimide. Inorg. Chem. 2003;42:2908–2918. doi: 10.1021/ic020420k. PubMed DOI
Krejčik M., Daněk M., Hartl F. Simple construction of an infrared optically transparent thin-layer electrochemical cell: Applications to the redox reactions of ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-di-t-butyl-catecholate)−. J. Electroanal. Chem. Interfacial Electrochem. 1991;317:179–187. doi: 10.1016/0022-0728(91)85012-E. DOI
Kaim W., Fiedler J. Spectroelectrochemistry: The best of two worlds. Chem. Soc. Rev. 2009;38:3373–3382. doi: 10.1039/b504286k. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2009. Revision D.01 ed.
Miertuš S., Scrocco E., Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. J. Chem. Phys. 1981;55:117–129. doi: 10.1016/0301-0104(81)85090-2. DOI
Cossi M., Scalmani G., Rega N., Barone V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J. Chem. Phys. 2002;117:43–54. doi: 10.1063/1.1480445. DOI
Becke A.D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/b515623h. PubMed DOI
Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI