New Spectroelectrochemical Insights into Manganese and Rhenium Bipyridine Complexes as Catalysts for the Electrochemical Reduction of Carbon Dioxide

. 2023 Nov 10 ; 28 (22) : . [epub] 20231110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38005257

Grantová podpora
2022FWAF2M PNRR MOST@UNITO project and the CADIVAPE PRIN project
Progetto Competitivo 2020 CMPT200224 CIRCC
RVO: 61388955 Czech Academy of Sciences

This study aimed to demonstrate the behavior of different complexes using IR spectroelectrochemistry (SEC), a technique that combines IR spectroscopy with electrochemistry. Four different Mn and Re catalysts for electrochemical CO2 reduction were studied in dry acetonitrile. In the case of Mn(apbpy)(CO)3Br (apbpy = 4(4-aminophenyl)-2,2'-bipyridine), SEC suggested that a very slow catalytic reduction of CO2 also occurs in acetonitrile in the absence of proton donors, but at rather negative potentials. In contrast, the corresponding Re(apbpy)(CO)3Br clearly demonstrated slow catalytic conversion at the first reduction potential. Switching to saturated CO2 solutions in a mixture of acetonitrile and 5% water as a proton donor, the SEC of Mn(apbpy)(CO)3Br displayed a faster catalytic behavior.

Zobrazit více v PubMed

Rotundo L., Gobetto R., Nervi C. Electrochemical CO2 reduction with earth-abundant metal catalysts. Curr. Opin. Green Sust. Chem. 2021;31:100509. doi: 10.1016/j.cogsc.2021.100509. DOI

Aresta M., Dibenedetto A., Angelini A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014;114:1709–1742. doi: 10.1021/cr4002758. PubMed DOI

Tang B., Xiao F.-X. An overview of solar-driven photoelectrochemical CO2 conversion to chemical fuels. ACS Catal. 2022;12:9023–9057. doi: 10.1021/acscatal.2c01667. DOI

Cheon J., Yang J.Y., Koper M., Ishitani O. From Pollutant to Chemical Feedstock: Valorizing Carbon Dioxide through Photo-and Electrochemical Processes. Acc. Chem. Res. 2022;55:931–932. doi: 10.1021/acs.accounts.2c00129. PubMed DOI

Chen C., Jin B.-K. FTIR Spectroelectrochemistry Study on the Reduction of CO2 at a Gold Electrode Interface. Chin. J. Inorg. Chem. 2012;28:541–545.

Hartl F., Aarnts M.P., Peelen K. Infrared Spectroelectrochemical Investigation of Carbon Dioxide Reduction Mediated by the Anion [Ru (SnPh3)(Co)2(iPr-DAB)]-(iPr-DAB= N,N′-Diisopropyl-1,4-diaza-1,3-butadiene) Coll. Czech. Chem. Comm. 1996;61:1342–1352. doi: 10.1135/cccc19961342. DOI

Breelove B.K., Takayama D., Ito T. Synthesis of an electron pooling ligand based on triruthenium clusters and electrochemical reduction of CO2 by its zinc(II)complex. Chem. Lett. 2004;33:1624–1625. doi: 10.1246/cl.2004.1624. DOI

Behnke S.L., Manesis A.C., Shafaat H.S. Spectroelectrochemical investigations of nickel cyclam indicate different reaction mechanisms for electrocatalytic CO2 and H+ reduction. Dalton Trans. 2018;47:15206–15216. doi: 10.1039/C8DT02873G. PubMed DOI

Polyansky D.E., Grills D.C., Ertem M.Z., Ngo K.T., Fujita E. Role of Bimetallic Interactions in the Enhancement of Catalytic CO2 Reduction by a Macrocyclic Cobalt Catalyst. ACS Catal. 2022;12:1706–1717. doi: 10.1021/acscatal.1c05043. DOI

Johnson F.P.A., George M.W., Hartl F., Turner J.J. Electrocatalytic Reduction of CO2 Using the Complexes [Re (bpy)(CO)3L] n (n=+ 1, L= P (OEt)3, CH3CN; n= 0, L= Cl-, Otf-; bpy= 2,2‘-Bipyridine; Otf-= CF3SO3) as Catalyst Precursors: Infrared Spectroelectrochemical Investigation. Organometallics. 1996;15:3374–3387. doi: 10.1021/om960044+. DOI

Neri G., Donaldsonb P.M., Cowan A.J. In situ study of the low overpotential “dimer pathway” for electrocatalytic carbon dioxide reduction by manganese carbonyl complexes. Phys. Chem. Chem. Phys. 2019;21:7389–7397. doi: 10.1039/C9CP00504H. PubMed DOI

Filippi J., Rotundo L., Gobetto R., Miller H.A., Nervi C., Lavacchi A., Vizza F. Turning manganese into gold: Efficient electrochemical CO2 reduction by a fac-Mn (apbpy)(CO)3Br complex in a gas–liquid interface flow cell. Chem. Eng. J. 2021;416:129050. doi: 10.1016/j.cej.2021.129050. DOI

Rotundo L., Filippi J., Gobetto R., Miller H.A., Rocca R., Nervi C., Vizza F. Electrochemical CO2 reduction in water at carbon cloth electrodes functionalized with a fac-Mn (apbpy)(CO)3 Br complex. Chem. Commun. 2019;55:775–777. doi: 10.1039/C8CC08385A. PubMed DOI

Rotundo L., Garino C., Priola E., Sassone D., Rao H., Ma B., Robert M., Fiedler J., Gobetto R., Nervi C. Electrochemical and photochemical reduction of CO2 catalyzed by Re(I)complexes carrying local proton sources. Organometallics. 2019;38:1351–1360. doi: 10.1021/acs.organomet.8b00588. DOI

Sun C., Rotundo L., Garino C., Nencini L., Yoon S.S., Gobetto R., Nervi C. Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. ChemPhysChem. 2017;18:3219–3229. doi: 10.1002/cphc.201700739. PubMed DOI

Rotundo L., Azzi E., Deagostino A., Garino C., Nencini L., Priola E., Quagliotto P., Rocca R., Gobetto R., Nervi C. Electronic effects of substituents on fac-M (bpy-R)(CO)3(M = Mn, Re) complexes for homogeneous CO2 electroreduction. Front. Chem. 2019;7:417. doi: 10.3389/fchem.2019.00417. PubMed DOI PMC

Bourrez M., Molton F., Chardon-Noblat S., Deronzier A. [Mn (bipyridyl)(CO)3Br]: An abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew. Chem. Int. Ed. 2011;50:9903–9906. doi: 10.1002/anie.201103616. PubMed DOI

Franco F., Cometto C., Garino C., Minero C., Sordello F., Nervi C., Gobetto R. Photo-and Electrocatalytic Reduction of CO2 by [Re (CO)3{α,α′-Diimine-(4-piperidinyl-1,8-naphthalimide)}Cl] Complexes. Eur. J. Inorg. Chem. 2015;2015:296–304. doi: 10.1002/ejic.201402912. DOI

Taylor J.O., Neri G., Banerji L., Cowan A.J., Hartl F. Strong impact of intramolecular hydrogen bonding on the cathodic path of [Re (3,3′-dihydroxy-2, 2′-bipyridine)(CO)3Cl] and catalytic reduction of carbon dioxide. Inorg. Chem. 2020;59:5564–5578. doi: 10.1021/acs.inorgchem.0c00263. PubMed DOI PMC

Madsen M.R., Rønne M.H., Heuschen M., Golo D., Ahlquist M.S.G., Skrydstrup T., Pedersen S.U., Daasbjerg K. Promoting selective generation of formic acid from CO2 using Mn (bpy)(CO)3Br as electrocatalyst and triethylamine/isopropanol as additives. J. Am. Chem. Soc. 2021;143:20491–20500. doi: 10.1021/jacs.1c10805. PubMed DOI

Franco F., Cometto C., Nencini L., Barolo C., Sordello F., Minero C., Fiedler J., Robert M., Gobetto R., Nervi C. Local proton source in electrocatalytic CO2 reduction with [Mn (bpy–R)(CO)3Br] complexes. Chem. Eur. J. 2017;23:4782–4793. doi: 10.1002/chem.201605546. PubMed DOI

Rønne M.H., Cho D., Madsen M.R., Jakobsen J.B., Eom S., Escoudé É., Hammershøj H.C.D., Nielsen D.U., Pedersen S.U., Baik M.-H., et al. Ligand-controlled product selectivity in electrochemical carbon dioxide reduction using manganese bipyridine catalysts. J. Am. Chem. Soc. 2020;142:4265–4275. doi: 10.1021/jacs.9b11806. PubMed DOI

Rønne M.H., Madsen M.R., Skrydstrup T., Pedersen S.U., Daasbjerg K. Mechanistic Elucidation of Dimer Formation and Strategies for Its Suppression in Electrochemical Reduction of Fac-Mn (bpy)(CO)3Br. ChemElectroChem. 2021;8:2108–2114. doi: 10.1002/celc.202100279. DOI

Madsen M.R., Jakobsen J.B., Rønne M.H., Liang H., Hammershøj H.C.D., Nørby P., Pedersen S.U., Skrydstrup T., Daasbjerg K. Evaluation of the electrocatalytic reduction of carbon dioxide using rhenium and ruthenium bipyridine catalysts bearing pendant amines in the secondary coordination sphere. Organometallics. 2020;39:1480–1490. doi: 10.1021/acs.organomet.9b00815. DOI

Stor G.J., Hartl F., van Outersterp J.W.M., Stufkens D.J. Spectroelectrochemical (IR, UV/Vis) Determination of the Reduction Pathways for a Series of [Re(CO)3(.alpha.-diimine)L′]0/+ (L′ = Halide, OTf-, THF, MeCN, n-PrCN, PPh3, P(OMe)3) Complexes. Organometallics. 1995;14:1115–1131. doi: 10.1021/om00003a013. DOI

Sampson M.D., Nguyen A.D., Grice K.A., Moore C.E., Rheingold A.L., Kubiak C.P. Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: Eliminating dimerization and altering catalysis. J. Am. Chem. Soc. 2014;136:5460–5471. doi: 10.1021/ja501252f. PubMed DOI

Machan C.W., Sampson M.D., Chabolla S.A., Dang T., Kubiak C.P. Developing a Mechanistic Understanding of Molecular Electrocatalysts for CO2 Reduction using Infrared Spectroelectrochemistry. Organometallics. 2014;33:4550–4559. doi: 10.1021/om500044a. DOI

Clark M.L., Grice K.A., Moore C.E., Rheingold A.L., Kubiak C.P. Reduction by M (bpy-R)(CO)4 (M = Mo, W; R = H, tBu) complexes. Electrochemical, spectroscopic, and computational studies and comparison with group 7 catalysts. Chem. Sci. 2014;5:1894–1900. doi: 10.1039/C3SC53470G. DOI

Cheng S.C., Blaine C.A., Hill M.G., Mann K.R. Electrochemical and IR spectroelectrochemical studies of the electrocatalytic reduction of carbon dioxide by [Ir2(dimen)4]2+ (dimen = 1,8-Diisocyanomenthane) Inorg. Chem. 1996;35:7704–7708. doi: 10.1021/ic9512385. DOI

Johansson O., Borgström M., Lomoth R., Palmblad M., Bergquist J., Hammarström L., Sun L., Åkermark B. Electron Donor–Acceptor Dyads Based on Ruthenium (II) Bipyridine and Terpyridine Complexes Bound to Naphthalenediimide. Inorg. Chem. 2003;42:2908–2918. doi: 10.1021/ic020420k. PubMed DOI

Krejčik M., Daněk M., Hartl F. Simple construction of an infrared optically transparent thin-layer electrochemical cell: Applications to the redox reactions of ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-di-t-butyl-catecholate)−. J. Electroanal. Chem. Interfacial Electrochem. 1991;317:179–187. doi: 10.1016/0022-0728(91)85012-E. DOI

Kaim W., Fiedler J. Spectroelectrochemistry: The best of two worlds. Chem. Soc. Rev. 2009;38:3373–3382. doi: 10.1039/b504286k. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2009. Revision D.01 ed.

Miertuš S., Scrocco E., Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. J. Chem. Phys. 1981;55:117–129. doi: 10.1016/0301-0104(81)85090-2. DOI

Cossi M., Scalmani G., Rega N., Barone V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J. Chem. Phys. 2002;117:43–54. doi: 10.1063/1.1480445. DOI

Becke A.D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/b515623h. PubMed DOI

Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...