The Effect of Indirect Decompression Through Extraforaminal Interbody Fusion for Degenerative Lumbar Disease

. 2023 Dec ; 57 (12) : 2058-2065. [epub] 20231017

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38009178

PURPOSE: Extraforaminal lumbar interbody fusion as with other methods that involve the mechanism of indirect decompression, the discussion not only focuses on the benefit of minimizing the risk of thecal sac injury and postoperative scarring, but also on the risk of insufficient decompression in the affected neural structures during the reduction of the affected segment. METHODS: Eighty-two patients presenting with degenerative lumbar disease with segmental instability underwent ELIF combined with transpedicular fixation and circumferential fusion. Clinical and radiographic evaluations were performed. RESULTS: The mean ODI significantly improved from 63.4 preoperatively to 32.3 1 year postoperatively. The mean VAS back pain significantly improved from 5.95 to 2.63 postoperatively and VAS (leg pain) improved from 6.04 to 2.44. The mean CSA increased from 103 mm2 preoperatively to 169 mm2 postoperatively. The median extension ratio of CSA was 33%. Disc height, segmental disc angle, and lumbar lordosis also improved significantly. Only three (3.7%) patients were revised using direct central decompression due to neurologic deterioration. CONCLUSION: Spinal stenosis was resolved successfully by indirect decompression through extraforaminal interbody fusion via a transmuscular limited approach.

Zobrazit více v PubMed

Harms JG, Jeszenszky D. Die posteriore, lumbale, interkorporelle Fusion in unilateraler transforaminaler Technik. Orthopaedics and Traumatology. 1998;10:90–102. doi: 10.1007/s00064-006-0112-7. PubMed DOI

Hara M, Nishimura Y, Nakajima Y, Umebayashi D, Takemoto M, Yamamoto Y, Haimoto S. Transforaminal Lumbar Interbody Fusion for Lumbar Degenerative Disorders: Mini-open TLIF and Corrective TLIF. Neurologia Medico-Chirurgica. 2015;55:547–556. doi: 10.2176/nmc.oa.2014-0402. PubMed DOI PMC

Lener S, Wipplinger Ch, Hernandez RN, Hussain I, Kirnaz S, Navarro-Ramirez R, Schmidt FA, Kim E, Hartl R. Defining the MIS-TLIF: A Systemic Review of Techniques and Technologies Used by Surgeons Worlwide. Global Spine Journal. 2020;10:151S–162S. doi: 10.1177/2192568219882346. PubMed DOI PMC

Zairi F, Arikart A, Allaoui M, Assaker R. Transforaminal Lmbar Interbody Fusion: Comparison between Open and Mini-open Approaches with Two Years Follow-up. J Neurol Surg A. 2013;74:131–135. doi: 10.1055/s-0032-1330956. PubMed DOI

Lee JG, Kim HS, Kim SW. Minimally Invasive Extraforaminal lumbar Interbody Fusion for Revision Surgery: A Technique through Kambin's Triangle. Korean J Spine 12:267–271, 2015. 10.14245/kjs.2015.12.4.267 PubMed PMC

Kurzbuch AR, Recoules-Arche D. Epidural Fibrosis Seen from a Different Angle: Extraforaminal Lumbar Interbody Fusion. J Neurol Surg A. 2017;78:82–86. doi: 10.1055/s-0036-1584827. PubMed DOI

Panjabi MM, Lydon C, Vasavada A. On the understanding of clinical instability. Spine. 1994;19:2642–2650. doi: 10.1097/00007632-199412000-00008. PubMed DOI

Iguchi T, Kanemura A, Kasahara K, Sato K, Kurihara A, et al. Lumbar instability and clinical symptoms: Which is the more critical factor for symptoms: Sagittal translation or segment angulation? Journal of Spinal Disorders & Techniques. 2004;17:284–290. doi: 10.1097/01.bsd.0000102473.95064.9d. PubMed DOI

Izzo R, Guarnieri G, Guglielmi G, Muto M. Biomechanics of the spine. Part II: spinal instability. (2013) European journal of radiology. 82 (1): 127–38. 2013. 10.1016/j.ejrad.2012.07.023 PubMed

Kim S, Yeon T, Heo Y, Lee W, Yi J, Kim T, Hwang Ch. Radiographic Results of Single Level Transforaminal Lumbar Interbody Fusion in Degenerative Lumbar Spine Disease: Focusing on Changes of Segmental Lordosis in Fusion Segment. Clinics in Orthopedic Surgery. 2009;1:207–2014. doi: 10.4055/cios.2009.1.4.207. PubMed DOI PMC

Li YM, Huang Z, Towner J, Li YI, Bucklen B. Laterally placed expandable interbody spacers with and without adjustable lordosis improve patient outcomes: A preliminary one-year chart review. Clinical Neurology and Neurosurgery. 2022;213:107123. doi: 10.1016/j.clineuro.2022.107123. PubMed DOI

Li HJ, Ge DW, Zhang S, Aisikeerbayi AJ, Wang H, He YL, Bian J, Cao XJ, Yang L, Yan JW. Comparative study between mini-open TLIF via Wiltse's approach and conventional open TLIF in lumbar degenerative diseases. European Review for Medical and Pharmacological Sciences. 2018;22(1 Suppl):53–62. PubMed

Shibayama M, Li GH, Zhu LG, Ito Z, Ito F. Microendoscopy-assisted extraforaminal lumbar interbody fusion for treating single-level spondylodesis. Journal of Orthopaedic Surgery and Research. 2021;16:166. doi: 10.1186/s13018-021-02313-9. PubMed DOI PMC

Oliviera L, Marchi L, Coutinho E, et al. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine. 2010;35:5331–5337. doi: 10.1097/brs.0b013e3182022db0. PubMed DOI

Fujibayashi S, Hynes RA, Otsuki B, Kimura H, Takemoto M, Matsuda S. Effect of Indirect Neural Decompression Through Oblique Lateral Interbody Fusion for Degenerative Lumbar Disease. Spine. 2015;40:E175–E182. doi: 10.1097/brs.0000000000000703. PubMed DOI

Kono Y, Gen H, Sakuma Y, Koshika Y. Comparison of Clinical and Radiologic Results of Mini-Open Transforaminal Lumbar Interbody Fusion and Extreme Lateral Interbody Fusion Indirect Decompression for Degenerative Lumbar Spondylolisthesis. Asian Spine J 12:356–364, 2018. 10.4184/2Fasj.2018.12.2.356 PubMed PMC

Nakashima H, Kanemura T, Satake K, Ishikawa Y, Ouchida J, Segi N, Yamaguchi H, Imagama S. Indirect Decompression on MRI Chronologically Progresses After Immediate Postlateral Lumbar Interbody Fusion: The Results From a Minimum of 2 Years Follow-Up. Spine. 2019;44:E1411–1418. doi: 10.1097/brs.0000000000003180. PubMed DOI

Hayashi K, Suzuki A, Ahmadi SA, et al. Mechanical stress induces elastic fibre disruption and cartilage matrix increase in ligamentum flavum. Science and Reports. 2005;7:13092. doi: 10.1038/s41598-017-13360-w. PubMed DOI PMC

Sairyo K, Biyani A, Goel V et al. Pathomechanism of ligamentum flavum hypertrophy: a multidisciplinary investigation based on clinical, biomechanical, histologic, and biologic assessments. Spine (Phila Pa 1976) 30:2649–56, 2005. 10.1097/01.brs.0000188117.77657.ee PubMed

Yoshida M, Shima K, Taniguchi Y et al. Hypertrophied ligamentum flavum in lumbar spinal canal stenosis. Pathogenesis and morphologic and immunohistochemical observation. Spine (Phila Pa 1976) 17:1353–6, 19920. 10.1097/00007632-199211000-00015 PubMed

Doria C, Balsamo M, Rampal V, Solla F. Minimally Invasive Far Lateral Lumbar Interbody Fusion: A Prospective Cohort Study. Global Spine Journal. 2018;8:512–516. doi: 10.1177/2192568218756908. PubMed DOI PMC

Li J, Li H, Zhang N, Wang Z, Zhao T, Chen L, Chen G, et al. Radiographic and clinical outcome of lateral lumbar interbody fusion for extreme lumbar spinal stenosis of Schizas grade D: A retrospective study. BMC Musculoskeletal Disorders. 2020;21:259. doi: 10.1186/s12891-020-03282-6. PubMed DOI PMC

Shimizu T, Fujibayashi S, Otsuki B. Indirect decompression with lateral interbody fusion for severe degenerative lumbar spinal stenosis: Minimum 1-year MRI follow-up. Journal of Neurosurgery. Spine. 2020 doi: 10.3171/2020.1.spine191412. PubMed DOI

Shimizu T, Fujibayashi S, Otsuki B, Murata K, Matsuda S. Indirect decompression via oblique lateral interbody fusion for severe degenerative lumbar spinal stenosis: A comparative study with direct decompression transforaminal/posterior lumbar interbody fusion. The Spine Journal. 2021;21:963–971. doi: 10.1016/j.spinee.2021.01.025. PubMed DOI

Nakashima H, Kanemura T, Satake K, Ishikawa Y, Ouchida J, Segi N, Yamaguchi H, Imagama S. Unplanned Second-Stage Decompression for Neurological Deterioration Caused by Central Canal Stenosis after Indirect Lumbar Decompression Surgery. Asian Spine J 13:584–591, 2019. 10.31616/asj.2018.0232 PubMed PMC

Derman PB, Ohnmeiss DD, Lauderback A, Guyer RD. Indirect Decompression for the Treatment of Degenerative Lumbar Stenosis. International Journal of Spine Surgery 15:1066–1071, 2021. 10.14444/8192 PubMed PMC

Malham GM, Parker RM, Goss B, Blecher CM. Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: Results from a prospective cohort study. European Spine Journal. 2015;24:S339–S345. doi: 10.1007/s00586-015-3807-3. PubMed DOI

Khalsa AS, Eghbali A, Eastlack RK, Tran S, Akbarnia BA, Ledesma JB, Mundis GM. Resting Pain Level as a Preoperative Predictor of Success With Indirect Decompression for Lumbar Spinal Stenosis: A Pilot Study. Global Spine Journal. 2019;9:150–154. doi: 10.1177/2192568218765986. PubMed DOI PMC

Kurzbuch AR, Kaech D, Baranowski P, Baranowska A, Recoules-Arche D. Extraforaminal Lumbar Interbody Fusion at the L5–S1 Level: Technical Considerations and Feasibility. J Neurol Surg A. 2017;78:507–512. doi: 10.1055/s-0037-1599226. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...