• This record comes from PubMed

Mapping the potential distribution of the principal vector of Crimean-Congo haemorrhagic fever virus Hyalomma marginatum in the Old World

. 2023 Nov ; 17 (11) : e0010855. [epub] 20231127

Language English Country United States Media electronic-ecollection

Document type Journal Article

Crimean-Congo haemorrhagic fever (CCHF) is the most widely distributed tick-borne viral disease in humans and is caused by the Crimean-Congo haemorrhagic fever virus (CCHFV). The virus has a broader distribution, expanding from western China and South Asia to the Middle East, southeast Europe, and Africa. The historical known distribution of the CCHFV vector Hyalomma marginatum in Europe includes most of the Mediterranean and the Balkan countries, Ukraine, and southern Russia. Further expansion of its potential distribution may have occurred in and out of the Mediterranean region. This study updated the distributional map of the principal vector of CCHFV, H. marginatum, in the Old World using an ecological niche modeling approach based on occurrence records from the Global Biodiversity Information Facility (GBIF) and a set of covariates. The model predicted higher suitability of H. marginatum occurrences in diverse regions of Africa and Asia. Furthermore, the model estimated the environmental suitability of H. marginatum across Europe. On a continental scale, the model anticipated a widespread potential distribution encompassing the southern, western, central, and eastern parts of Europe, reaching as far north as the southern regions of Scandinavian countries. The distribution of H. marginatum also covered countries across Central Europe where the species is not autochthonous. All models were statistically robust and performed better than random expectations (p < 0.001). Based on the model results, climatic conditions could hamper the successful overwintering of H. marginatum and their survival as adults in many regions of the Old World. Regular updates of the models are still required to continually assess the areas at risk using up-to-date occurrence and climatic data in present-day and future conditions.

See more in PubMed

Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: History, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100: 159–189. doi: 10.1016/j.antiviral.2013.07.006 PubMed DOI

Ergönül Ö. Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 2006;6: 203–214. doi: 10.1016/S1473-3099(06)70435-2 PubMed DOI PMC

Whitehouse C. Crimean Congo hemorrhagic fever. Antiviral Res. 2004;64: 145–160. doi: 10.1016/j.antiviral.2004.08.001 PubMed DOI

Yilmaz GR, Buzgan T, Irmak H, Safran A, Uzun R, Cevik MA, et al.. The epidemiology of Crimean-Congo hemorrhagic fever in Turkey, 2002–2007. International Journal of Infectious Diseases. 2009;13: 380–386. doi: 10.1016/j.ijid.2008.07.021 PubMed DOI

Shayan S, Bokaean M, Shahrivar MR, Chinikar S. Crimean-Congo Hemorrhagic Fever. Lab Med. 2015;46: 180–189. doi: 10.1309/LMN1P2FRZ7BKZSCO PubMed DOI

Apanaskevich DA, Horak IG. The genus Hyalomma Koch, 1844: v. re-evaluation of the taxonomic rank of taxa comprising the H. (Euhyalomma) marginatum koch complex of species (Acari: Ixodidae) with redescription of all parasitic stages and notes on biology. Int J Acarol. 2008;34: 13–42.

Bakheit MA, Latif AA, Vatansever Z, Seitzer U, Ahmed J. The Huge Risks Due to Hyalomma Ticks. 2012. pp. 167–194.

Wallménius K, Pettersson JH-O, Jaenson TGT, Nilsson K. Prevalence of Rickettsia spp., Anaplasma phagocytophilum, and Coxiella burnetii in adult Ixodes ricinus ticks from 29 study areas in central and southern Sweden. Ticks Tick Borne Dis. 2012;3: 100–106. doi: 10.1016/j.ttbdis.2011.11.003 PubMed DOI

Tirosh-Levy S, Mazuz ML, Savitsky I, Pinkas D, Gottlieb Y, Steinman A. Serological and Molecular Prevalence of Babesia caballi in Apparently Healthy Horses in Israel. Pathogens. 2021;10: 445. doi: 10.3390/pathogens10040445 PubMed DOI PMC

EFSA (The European Food Safety Authority). Scientific Opinion on the Role of Tick Vectors in the Epidemiology of Crimean-Congo Hemorrhagic Fever and African Swine Fever in Eurasia. EFSA Journal. 2010;8: 1703.

ECDC (European Centre for Disease Prevention and Control). Hyalomma marginatum—current known distribution: March 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/Hyalomma-marginatum-current-known-distribution-march-2023 (accessed on June 2023).

Sonenshine DE, Roe RM. Book review: Sonenshine D.E.; Roe R.M. 2013: Biology of Ticks. 2nd ed. Eur J Entomol. 2015;112.

Hoogstraal H. Review Article: The Epidemiology of Tick-Borne Crimean-Congo Hemorrhagic Fever in Asia, Europe, and Africa. J Med Entomol. 1979;15: 307–417. PubMed

Chinikar S, Ghiasi SM, Moradi M, Goya MM, Shirzadi MR, Zeinali M, et al.. Geographical Distribution and Surveillance of Crimean-Congo Hemorrhagic Fever in Iran. Vector-Borne and Zoonotic Diseases. 2010;10: 705–708. doi: 10.1089/vbz.2009.0247 PubMed DOI

Sargianou M, Panos G, Tsatsaris A, Gogos C, Papa A. Crimean-Congo hemorrhagic fever: seroprevalence and risk factors among humans in Achaia, western Greece. International Journal of Infectious Diseases. 2013;17: e1160–e1165. doi: 10.1016/j.ijid.2013.07.015 PubMed DOI

Mustafa ML, Ayazi E, Mohareb E, Yingst S, Zayed A, Rossi CA, et al.. Crimean-Congo Hemorrhagic Fever, Afghanistan, 2009. Emerg Infect Dis. 2011;17: 1940–1941. doi: 10.3201/eid1710.110061 PubMed DOI PMC

Kampen H, Poltz W, Hartelt K, Wölfel R, Faulde M. Detection of a questing Hyalomma marginatum marginatum adult female (Acari, Ixodidae) in southern Germany. Exp Appl Acarol. 2007;43: 227–231. doi: 10.1007/s10493-007-9113-y PubMed DOI

Földvári G, Rigó K, Jablonszky M, Biró N, Majoros G, Molnár V, et al.. Ticks and the city: Ectoparasites of the Northern white-breasted hedgehog (Erinaceus roumanicus) in an urban park. Ticks Tick Borne Dis. 2011;2: 231–234. doi: 10.1016/j.ttbdis.2011.09.001 PubMed DOI

Duscher GG, Hodžić A, Hufnagl P, Wille-Piazzai W, Schötta A-M, Markowicz MA, et al.. Adult Hyalomma marginatum tick positive for Rickettsia aeschlimannii in Austria, October 2018. Eurosurveillance. 2018;23. doi: 10.2807/1560-7917.ES.2018.23.48.1800595 PubMed DOI PMC

Lesiczka PM, Daněk O, Modrý D, Hrazdilová K, Votýpka J, Zurek L. A new report of adult Hyalomma marginatum and Hyalomma rufipes in the Czech Republic. Ticks Tick Borne Dis. 2022;13: 101894. doi: 10.1016/j.ttbdis.2021.101894 PubMed DOI

Hoogstraal H, Kaiser MN, Traylor MA, Gaber S, Guindy E. Ticks (Ixodoidea) on birds migrating from Africa to Europe and Asia. Bull World Health Organ. 1961;24: 197–212. PubMed PMC

Hillyard PD. Ticks of North-West Europe: keys and notes for identification of the species. London: The Linnean Society of London; 1996.

Jaenson TGT, TäLleklint L, Lundqvist L, Olsen B, Chirico J, Mejlon H. Geographical Distribution, Host Associations, and Vector Roles of Ticks (Acari: Ixodidae, Argasidae) in Sweden. J Med Entomol. 1994;31: 240–256. doi: 10.1093/jmedent/31.2.240 PubMed DOI PMC

Jameson LJ, Morgan PJ, Medlock JM, Watola G, Vaux AGC. Importation of Hyalomma marginatum, vector of Crimean-Congo haemorrhagic fever virus, into the United Kingdom by migratory birds. Ticks Tick Borne Dis. 2012;3: 95–99. doi: 10.1016/j.ttbdis.2011.12.002 PubMed DOI

Hornok S, Flaisz B, Takács N, Kontschán J, Csörgő T, Csipak Á, et al.. Bird ticks in Hungary reflect western, southern, eastern flyway connections and two genetic lineages of Ixodes frontalis and Haemaphysalis concinna. Parasit Vectors. 2016;9: 101. doi: 10.1186/s13071-016-1365-0 PubMed DOI PMC

Hubálek Z, Sedláček P, Estrada-Peña A, Vojtíšek J, Rudolf I. First record of Hyalomma rufipes in the Czech Republic, with a review of relevant cases in other parts of Europe. Ticks Tick Borne Dis. 2020;11: 101421. doi: 10.1016/j.ttbdis.2020.101421 PubMed DOI

Portillo A, Palomar AM, Santibáñez P, Oteo JA. Epidemiological Aspects of Crimean-Congo Hemorrhagic Fever in Western Europe: What about the Future? Microorganisms. 2021;9: 649. doi: 10.3390/microorganisms9030649 PubMed DOI PMC

Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E. Effects of Climate Change on Ticks and Tick-Borne Diseases in Europe. Interdiscip Perspect Infect Dis. 2009;2009: 1–12. doi: 10.1155/2009/593232 PubMed DOI PMC

Samy AM, Thomas SM, Abd El Wahed A, Cohoon KP, Peterson AT. Mapping the global geographic potential of Zika virus spread. Mem Inst Oswaldo Cruz. 2016;111: 559–560. doi: 10.1590/0074-02760160149 PubMed DOI PMC

Brown JL, Bennett JR, French CM. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ. 2017;5. doi: 10.7717/peerj.4095 PubMed DOI PMC

Beyer HL. Hawth’s analysis tools for ArcGIS. http://www.spatialecology.com/htools; 2004.

Estrada-Peña A, Alexander N, Wint GRW. Perspectives on modelling the distribution of ticks for large areas: so far so good? Parasit Vectors. 2016;9: 179. doi: 10.1186/s13071-016-1474-9 PubMed DOI PMC

WorldGrids.org. WorldGrids.org: a repository of global soil covariates. Available at: http://worldgrids.org/doku.php?id=wiki:layers#land_cover_and_land_use.

Randolph SE. Ticks and tick-borne disease systems in space and from space. 2000. pp. 217–243. PubMed

Guerra M. Predicting the Risk of Lyme Disease: Habitat Suitability for Ixodes scapularis in the North Central United States. Emerg Infect Dis. 2002;8: 289–297. doi: 10.3201/eid0803.010166 PubMed DOI PMC

Alkishe A, Raghavan RK, Peterson AT. Likely Geographic Distributional Shifts among Medically Important Tick Species and Tick-Associated Diseases under Climate Change in North America: A Review. Insects. 2021;12. PubMed PMC

Estrada-Peña A, Vatansever Z, Gargili A, Ergönül Ö. The trend towards habitat fragmentation is the key factor driving the spread of Crimean-Congo haemorrhagic fever. Epidemiol Infect. 2010;138: 1194–1203. doi: 10.1017/S0950268809991026 PubMed DOI

Karger DN, Nobis MP, Normand S, Graham CH, Zimmermann NE. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the Past Discussions. 2021;2021: 1–27.

Samy AM, Peterson AT. Climate Change Influences on the Global Potential Distribution of Bluetongue Virus. PLoS One. 2016;11: e0150489. doi: 10.1371/journal.pone.0150489 PubMed DOI PMC

VanAcker MC, Little EAH, Molaei G, Bajwa WI, Diuk-Wasser MA. Enhancement of Risk for Lyme Disease by Landscape Connectivity, New York, New York, USA. Emerg Infect Dis. 2019;25: 1136–1143. doi: 10.3201/eid2506.181741 PubMed DOI PMC

Klemola T, Sormunen JJ, Mojzer J, Mäkelä S, Vesterinen EJ. High tick abundance and diversity of tick-borne pathogens in a Finnish city. Urban Ecosyst. 2019;22: 817–826.

Paul REL, Cote M, Le Naour E, Bonnet SI. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasit Vectors. 2016;9: 309. doi: 10.1186/s13071-016-1591-5 PubMed DOI PMC

Pangrácová L, Derdáková M, Pekárik L, Hviščová I, Víchová B, Stanko M, et al.. Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasit Vectors. 2013;6: 238. doi: 10.1186/1756-3305-6-238 PubMed DOI PMC

Kowalec M, Szewczyk T, Welc-Falęciak R, Siński E, Karbowiak G, Bajer A. Ticks and the city—are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasit Vectors. 2017;10: 573. doi: 10.1186/s13071-017-2391-2 PubMed DOI PMC

Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Zhang X, et al.. Center for International Earth Science Information Network—CIESIN—Columbia University (2016). Gridded population of the World, Version 4 (GPWv4): Population density. Palisades. NY: NASA Socioeconomic Data and Applications Center (SEDAC). Atlas of Environmental Risks Facing China Under Climate Change. 2017; 228.

Noor AM, Alegana VA, Gething PW, Tatem AJ, Snow RW. Using remotely sensed night-time light as a proxy for poverty in Africa. Popul Health Metr. 2008;6: 5. doi: 10.1186/1478-7954-6-5 PubMed DOI PMC

Wang W, Cheng H, Zhang L. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China. Advances in Space Research. 2012;49: 1253–1264.

Nelson A. Travel Time to Major Cities: A Global Map of Accessibility. In: Global Environment Monitoring Unit-Joint Research Centre of the European Commission, Ispra Italy. Jan 2008.

Time Cliff A., travel and infection. Br Med Bull. 2004;69: 87–99. PubMed

Soberon Jorge, Peterson A Townsend. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodiversity Informatics. 2005;2.

Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, et al.. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell. 2011;222: 1810–1819.

Machado-Stredel F, Cobos ME, Peterson AT. A simulation-based method for selecting calibration areas for ecological niche models and species distribution models. Front Biogeogr. 2021;13.

Cobos ME, Peterson AT, Barve N, Osorio-Olvera L. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ. 2019;7: e6281. doi: 10.7717/peerj.6281 PubMed DOI PMC

Samy AM, Yáñez-Arenas C, Jaeschke A, Cheng Y, Thomas SM. Modeling Distributional Potential of Infectious Diseases. Geospatial Technology for Human Well-Being and Health. Cham: Springer International Publishing; 2022. pp. 337–353.

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17: 43–57.

Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, et al.. Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press; 2011.

Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, et al.. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Modell. 2013;263: 10–18.

Adjemian JCZ, Girvetz EH, Beckett L, Foley JE. Analysis of Genetic Algorithm for Rule-Set Production (GARP) Modeling Approach for Predicting Distributions of Fleas Implicated as Vectors of Plague, Yersinia pestis, in California. J Med Entomol. 2006;43: 93–103. doi: 10.1093/jmedent/43.1.93 PubMed DOI

Staples JE, Breiman RF, Powers AM. Chikungunya Fever: An Epidemiological Review of a Re-Emerging Infectious Disease. Clinical Infectious Diseases. 2009;49: 942–948. doi: 10.1086/605496 PubMed DOI

Khatchikan C, Sangermano F, Kendell D, Lidvahl T. Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction. Med Vet Entomol. 2011;25: 268–275. doi: 10.1111/j.1365-2915.2010.00935.x PubMed DOI PMC

Donalisio MR, Souza CE, Angerami RN, Samy AM. Mapping Brazilian spotted fever: Linking etiological agent, vectors, and hosts. Acta Trop. 2020;207: 105496. doi: 10.1016/j.actatropica.2020.105496 PubMed DOI

Lin S, DeVisser MH, Messina JP. An agent-based model to simulate tsetse fly distribution and control techniques: A case study in Nguruman, Kenya. Ecol Modell. 2015;314: 80–89. PubMed PMC

Samy AM, Elaagip AH, Kenawy MA, Ayres CFJ, Peterson AT, Soliman DE. Climate Change Influences on the Global Potential Distribution of the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis. PLoS One. 2016;11: e0163863. doi: 10.1371/journal.pone.0163863 PubMed DOI PMC

Samy AM, Alkishe AA, Thomas SM, Wang Liya, Zhang Wenyi. Mapping the potential distributions of etiological agent, vectors, and reservoirs of Japanese Encephalitis in Asia and Australia. Acta Trop. 2018;188: 108–117. PubMed

Valcárcel F, González J, González MG, Sánchez M, Tercero JM, Elhachimi L, et al.. Comparative Ecology of Hyalomma lusitanicum and Hyalomma marginatum Koch, 1844 (Acarina: Ixodidae). Insects. 2020;11: 303. doi: 10.3390/insects11050303 PubMed DOI PMC

Okely M, Anan R, Gad-Allah S, Samy AM. Mapping the environmental suitability of etiological agent and tick vectors of Crimean-Congo hemorrhagic fever. Acta Trop. 2020;203: 105319. doi: 10.1016/j.actatropica.2019.105319 PubMed DOI

Estrada-Peña A, de la Fuente J, Latapia T, Ortega C. The Impact of Climate Trends on a Tick Affecting Public Health: A Retrospective Modeling Approach for Hyalomma marginatum (Ixodidae). PLoS One. 2015;10: e0125760. doi: 10.1371/journal.pone.0125760 PubMed DOI PMC

Williams HW, Cross DE, Crump HL, Drost CJ, Thomas CJ. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate. Parasit Vectors. 2015;8: 440. doi: 10.1186/s13071-015-1046-4 PubMed DOI PMC

Bouattour A, Darghouth M, Darghouth M. Distribution and ecology of ticks (Acari: Ixodidae) infesting livestock in Tunisia: an overview of eighth years field collections. Parassitologia. 1999;41. PubMed

ECDC (European Centre for Disease Prevention and Control) (Available at: https://www.ecdc.europa.eu/en/disease-vectors/facts/tick-factsheets/Hyalomma-marginatum). Hyalomma marginatum—Factsheet for experts.

Magyar N, Kis Z, Barabás É, Nagy A, Henczkó J, Damjanova I, et al.. New geographical area on the map of Crimean-Congo hemorrhagic fever virus: First serological evidence in the Hungarian population. Ticks Tick Borne Dis. 2021;12: 101555. doi: 10.1016/j.ttbdis.2020.101555 PubMed DOI

Capek M, Literak I, Kocianova E, Sychra O, Najer T, Trnka A, et al.. Ticks of the Hyalomma marginatum complex transported by migratory birds into Central Europe. Ticks Tick Borne Dis. 2014;5: 489–493. doi: 10.1016/j.ttbdis.2014.03.002 PubMed DOI

Chitimia-Dobler L, Schaper S, Rieß R, Bitterwolf K, Frangoulidis D, Bestehorn M, et al.. Imported Hyalomma ticks in Germany in 2018. Parasit Vectors. 2019;12: 134. doi: 10.1186/s13071-019-3380-4 PubMed DOI PMC

Siuda K, Dutkiewicz J. Hyalomma marginatum Koch, 1844 (Acarina: Ixodidae) in Poland—an example of transport of southern tick by migratory birds. Wiad Parazytol. 1979;25: 333–8. PubMed

Magdalena Nowak-Chmura, Wojciech Solarz. A new case of transfer to Poland of the tick Hyalomma (Euhyalomma) marginatum Koch, 1844 (Acari: Amblyommidae) on migratory birds. Puławy, Poland: Abstracts of XXII Congress of Polish Parasitological Society; 2010.

Rudolf I, Kejíková R, Vojtíšek J, Mendel J, Peňázziová K, Hubálek Z, et al.. Probable overwintering of adult Hyalomma rufipes in Central Europe. Ticks Tick Borne Dis. 2021;12: 101718. doi: 10.1016/j.ttbdis.2021.101718 PubMed DOI

Johnsen P. Hyalomma marginatum Koch, a tick new to Denmark. Entomol Med. 1943;22: 381–383.

Nuorteva P, Hoogstraal H. The incidence of ticks (Ixodoidea, Ixodidae) on migratory birds arriving in Finland during the spring of 1962. Ann Med exp Fenn. 1963;41. PubMed

Sormunen JJ, Klemola T, Vesterinen EJ. Ticks (Acari: Ixodidae) parasitizing migrating and local breeding birds in Finland. Exp Appl Acarol. 2022;86: 145–156. doi: 10.1007/s10493-021-00679-3 PubMed DOI PMC

Hasle G, Bjune G, Edvardsen E, Jakobsen C, Linnehol B, Røer JE, et al.. Transport of Ticks by Migratory Passerine Birds to Norway. Journal of Parasitology. 2009;95: 1342–1351. doi: 10.1645/GE-2146.1 PubMed DOI

Grandi G, Chitimia-Dobler L, Choklikitumnuey P, Strube C, Springer A, Albihn A, et al.. First records of adult Hyalomma marginatum and H. rufipes ticks (Acari: Ixodidae) in Sweden. Ticks Tick Borne Dis. 2020;11: 101403. PubMed

Fernández-Ruiz N, Estrada-Peña A. Towards New Horizons: Climate Trends in Europe Increase the Environmental Suitability for Permanent Populations of Hyalomma marginatum (Ixodidae). Pathogens. 2021;10: 95. doi: 10.3390/pathogens10020095 PubMed DOI PMC

Escobar LE, Craft ME. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling. Front Microbiol. 2016;07. doi: 10.3389/fmicb.2016.01174 PubMed DOI PMC

Mackenzie JS, Jeggo M. The One Health Approach—Why Is It So Important? Trop Med Infect Dis. 2019;4: 88. doi: 10.3390/tropicalmed4020088 PubMed DOI PMC

Estrada-Peña A, de la Fuente J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res. 2014;108: 104–128. doi: 10.1016/j.antiviral.2014.05.016 PubMed DOI

Grech-Angelini S, Stachurski F, Lancelot R, Boissier J, Allienne J-F, Marco S, et al.. Ticks (Acari: Ixodidae) infesting cattle and some other domestic and wild hosts on the French Mediterranean island of Corsica. Parasit Vectors. 2016;9: 582. doi: 10.1186/s13071-016-1876-8 PubMed DOI PMC

McCoy KD, Léger E, Dietrich M. Host specialization in ticks and transmission of tick-borne diseases: a review. Front Cell Infect Microbiol. 2013;3. PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

Crimean-Congo haemorrhagic fever virus in ticks, domestic, and wild animals

. 2024 ; 11 () : 1513123. [epub] 20250116

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...