Palladium(II) and Platinum(II) Bis(Stibinidene) Complexes with Intramolecular Hydrogen-Bond Enforced Geometries
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21-02964S
Czech Science Foundation
Michael Somogyi Program
Varga József Foundation
Faculty of Chemical Technology and Biotechnology
Budapest University of Technology and Economics
Ministry of Innovation and Technology of Hungary
TKP2021
National Research, Development and Innovation Fund
ÚNKP-23-3-I-BME-268
National Research, Development and Innovation Fund
New National Excellence Program
Ministry for Culture and Innovation
National Research, Development and Innovation Fund
PubMed
38015161
DOI
10.1002/cplu.202300573
Knihovny.cz E-zdroje
- Klíčová slova
- TD-DFT, hydrogen-bond, palladium, platinum, stibinidene,
- Publikační typ
- časopisecké články MeSH
The coordination capability of two N,C,N pincer coordinated stibinidenes, i. e. bis(imino)- [2,6-(DippN=CH)2C6H3]Sb (1) or imino-amino- [2-(DippN=CH)-6-(DippNHCH2)C6H3]Sb (2) toward palladium(II) and platinum(II) centers was examined. In the course of this study, seven new square-planar bis(stibinidene) complexes were synthesized and characterized by NMR, IR, Raman, UV-vis spectroscopy and single crystal (sc)-X-ray diffraction analysis. In all cases, both stibinidene ligands 1 or 2 adopt trans positions, but differ significantly in the torsion angle describing mutual orientation of aromatic rings of the stibinidenes along the Sb-Pd/Pt-Sb axes. Furthermore, majority of complexes form isomers in solution most probably due to a hindered rotation around Sb-Pd/Pt bonds caused by bulkiness of 1 and 2. This phenomenon also seems to be influenced by the absence/presence of a pendant -CH2NH- group in 1/2 that is able to form intramolecular hydrogen bonds with the adjacent chlorine atom(s) attached to the metal centers. The whole problem was subjected to a theoretical study focusing on the role of hydrogen bonds in structure architecture of the complexes. To describe the UV-vis spectra of these highly coloured complexes, TD-DFT calculations were employed. These outline differences between the stibinidene ligands, the transition metals as well as between the charge of the complexes (neutral or anionic).
Zobrazit více v PubMed
For relevant reviews see:
V. K. Greenacre, W. Levason, G. Reid, Coord. Chem. Rev. 2021, 432, 213698;
S. L. Benjamin, G. Reid, Coord. Chem. Rev. 2015, 297–298, 168;
W. Levason, G. Reid, Coord. Chem. Rev. 2006, 250, 2565;
N. R. Champness, W. Levason, Coord. Chem. Rev. 1994, 133, 115.
M. L. H. A. Green, J. Organomet. Chem. 1995, 500, 127.
A. Amgoune, D. Bourissou, Chem. Commun. 2011, 47, 859;
H. Braunschweig, R. D. Dewhurst, Dalton Trans. 2011, 40, 549;
G. A. Parkin, Organometallics 2006, 25, 4744;
A. F. Hill, Organometallics 2006, 25, 4741;
G. Bouhadir, A. Amgoune, D. Bourissou, Adv. Organomet. Chem. 2010, 58, 1;
G. Bouhadir, D. Bourissou, Chem. Soc. Rev. 2016, 45, 1065;
H. Kameo, H. Nakazawa, Chem. Asian J. 2013, 8, 1720.
J. S. Jones, F. P. Gabbaï, Acc. Chem. Res. 2013, 8, 1720;
D. You, F. P. Gabbaï, Trends Chem. 2019, 1, 485.
For recent examples:
J. E. Smith, H. Yang, F. P. Gabbaï, Organometallics 2021, 40, 3886;
D. You, J. E. Smith, S. Sen, F. P. Gabbaï, Organometallics 2020, 39, 4169;
Y. H. Lo, F. P. Gabbaï, Angew. Chem. Int. Ed. 2019, 58, 10194;
D. You, H. Yang, S. Sen, F. P. Gabbaï, J. Am. Chem. Soc. 2018, 140, 9644.
P. Šimon, F. De Proft, R. Jambor, A. Růžička, L. Dostál, Angew. Chem. Int. Ed. 2010, 49, 5468;
L. Dostál, Coord. Chem. Rev. 2017, 353, 142.
J. Zechovský, E. Kertész, V. Kremláček, M. Hejda, T. Mikysek, M. Erben, A. Růžička, R. Jambor, Z. Benkö, L. Dostál, Organometallics 2022, 41, 2535.
V. Kremláček, M. Erben, R. Jambor, A. Růžička, J. Turek, E. Rychagova, S. Ketkov, L. Dostál, Chem. Eur. J. 2019, 25, 5668;
M. Kořenková, V. Kremláček, M. Hejda, J. Turek, R. Khudaverdyan, M. Erben, R. Jambor, A. Růžička, L. Dostál, Chem. Eur. J. 2020, 26, 1144;
M. Kořenková, M. Hejda, M. Erben, R. Jirásko, R. Jambor, A. Růžička, E. Rychagova, S. Ketkov, L. Dostál, Chem. Eur. J. 2019, 25, 12884;
V. Kremláček, M. Hejda, E. Rychagova, S. Ketkov, R. Jambor, A. Růžička, L. Dostál, Eur. J. Inorg. Chem. 2021, 4030;
J. Zechovský, V. Kremláček, M. Erben, M. Hejda, E. Rychagova, R. Jambor, A. Růžička, S. Ketkov, L. Dostál, Dalton Trans. 2022, 51, 15933.
I. Vránová, M. Alonso, R. Jambor, A. Růžička, M. Erben, L. Dostál, Chem. Eur. J. 2016, 22, 7376;
I. Vránová, V. Kremláček, M. Erben, J. Turek, R. Jambor, A. Růžička, M. Alonso, L. Dostál, Dalton Trans. 2017, 46, 3556;
M. Kořenková, V. Kremláček, M. Erben, R. Jirásko, F. De Proft, J. Turek, R. Jambor, A. Růžička, I. Císařová, L. Dostál, Dalton Trans. 2018, 47, 14503.
M. Kořenková, M. Hejda, R. Jirásko, T. Block, F. Uhlík, R. Jambor, A. Růžička, R. Pöttgen, L. Dostál, Dalton Trans. 2019, 48, 11912.
For example see:
J. von Seyerl, G. Huttner, Angew. Chem. Int. Ed. 1978, 17, 84;
U. Weber, L. Zsolnai, G. Huttner, J. Organomet. Chem. 1984, 260, 2;
B. Sigwarth, U. Weber, L. Zsolnai, G. Huttner, Chem. Ber. 1985, 118, 3;
L. Rummel, M. Seidl, A. Y. Timoshkin, M. Scheer, Z. Anorg. Allg. Chem. 2022, 648, e202200014;
L. M. Opris, A. Silvestru, C. Silvestru, H. J. Breuing, E. Lork, Dalton Trans. 2004, 3575–3585;
H. Steffenfauseweh, D. Rottschäfer, Y. V. Vishnevskiy, B. Neumann, H.-G. Stammler, D. W. Szczepanik, R. S. Ghadwal, Angew. Chem. 2023, 135, e202216003;
Angew. Chem. Int. Ed. 2023, 62, e202216003.
M. Kořenková, M. Hejda, P. Štěpnička, F. Uhlík, R. Jambor, A. Růžička, L. Dostál, Dalton Trans. 2018, 47, 5812.
I. Vránová, M. Alonso, R. Jambor, A. Růžička, J. Turek, L. Dostál, Chem. Eur. J. 2017, 23, 2340–2349.
P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 186.
A. Mentes, J. Fawcett, Inorg. Chim. Acta 2005, 358, 1279;
P. P. Phadnis, V. K. Jain, B. Varghese, Appl. Organomet. Chem. 2002, 16, 61;
P. Sharma, D. Pérez, N. Rosas, A. Cabrera, A. Toscano, J. Organomet. Chem. 2006, 691, 579.
N. K. Roberts, B. W. Skelton, A. H. White, S. B. Wild, J. Chem. Soc. Dalton Trans. 1982, 2093;
G. J. Grant, D. A. Benefield, D. G. Van Derveer, Dalton Trans. 2009, 8605.
J. Telser, R. S. Drago, Inorg. Chem. 1984, 23, 1798.
R. Mokrai, J. Barrett, D. C. Apperley, Z. Benkö, D. Heift, Inorg. Chem. 2020, 59, 8916.
W. Levason, M. L. Matthews, G. Reid, M. Webster, Dalton Trans. 2004, 554;
A. Mentes, R. D. W. Kemmitt, J. Fawcett, D. R. Russell, J. Organomet. Chem. 1997, 528, 59;
A. F. Chiffey, J. Evans, W. Levason, M. Webster, Organometallics 1995, 14, 1522;
T. Even, A. R. J. Genge, A. M. Hill, N. J. Holmes, W. Levason, M. Webster, Dalton Trans. 2000, 655;
A. J. Plajer, D. Crusius, R. B. Jethwa, A. García-Romero, A. D. Bond, R. García-Rodríguez, D. S. Wright, Dalton Trans. 2021, 50, 2393;
M. D. Brown, W. Levason, G. Reid, M. Webster, Dalton Trans. 2006, 5648;
G. J. Grant, D. A. Benefield, D. G. VanDerveer, Dalton Trans. 2009, 8605.
Gaussian 16, Revision B.01: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, (2016).
A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
J. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibsom, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814.
D. Feller, J. Comput. Chem. 1996, 17, 1571.
K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model. 2007, 47, 1045.
NBO 5.9. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2009, http://www.chem.wisc.edu/~nbo5.
http://iqmol.org/.
T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
N. M. O′Boyle, A. L. Tenderholt, K. M. Langner, J. Comb. Chem. 2008, 29, 839.
G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.
P. Van der Sluis, A. L. Spek, Acta Crystallogr. Sect. A 1990, 46, 194.