Advances in the Construction and Application of Thyroid Organoids
Language English Country Czech Republic Media print
Document type Review, Journal Article
PubMed
38015755
PubMed Central
PMC10751051
DOI
10.33549/physiolres.935102
PII: 935102
Knihovny.cz E-resources
- MeSH
- Stem Cells MeSH
- Organoids * MeSH
- Thyroid Gland * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Organoids are complex multicellular structures that stem cells self-organize in three-dimensional (3D) cultures into anatomical structures and functional units similar to those seen in the organs from which they originate. This review describes the construction of thyroid organoids and the research progress that has occurred in models of thyroid-related disease. As a novel tool for modeling in a 3D multicellular environment, organoids help provide some useful references for the study of the pathogenesis of thyroid disease.
See more in PubMed
Kurmann AA, Serra M, Hawkins F, Rankin SA, Mori M, Astapova I, Ullas S, et al. Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. Cell Stem Cell. 2015;17:527–542. doi: 10.1016/j.stem.2015.09.004. PubMed DOI PMC
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–265. doi: 10.1038/nature07935. PubMed DOI
Li M, Izpisua Belmonte JC. Organoids - preclinical models of human disease. N Engl J Med. 2019;380:569–579. doi: 10.1056/NEJMra1806175. PubMed DOI
Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14:301–316. doi: 10.1038/nrendo.2018.18. PubMed DOI
Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 2017;32:266–277. doi: 10.1152/physiol.00036.2016. PubMed DOI PMC
Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao XH, Dumitrescu AM, Refetoff S, et al. Generation of functional thyroid from embryonic stem cells. Nature. 2012;491:66–71. doi: 10.1038/nature11525. PubMed DOI PMC
Samimi H, Atlasi R, Parichehreh-Dizaji S, Khazaei S, Akhavan Rahnama M, Seifirad S, Haghpanah V. A systematic review on thyroid organoid models: time-trend and its achievements. Am J Physiol Endocrinol Metab. 2021;320:E581–E590. doi: 10.1152/ajpendo.00479.2020. PubMed DOI
Dame K, Cincotta S, Lang AH, Sanghrajka RM, Zhang L, Choi J, Kwok L, et al. Thyroid progenitors are robustly derived from embryonic stem cells through transient, developmental stage-specific overexpression of Nkx2-1. Stem Cell Reports. 2017;8:216–225. doi: 10.1016/j.stemcr.2016.12.024. PubMed DOI PMC
Ma R, Morshed SA, Latif R, Davies TF. Thyroid cell differentiation from murine induced pluripotent stem cells. Front Endocrinol (Lausanne) 2015;6:56. doi: 10.3389/fendo.2015.00056. PubMed DOI PMC
Ma R, Latif R, Davies TF. Human embryonic stem cells form functional thyroid follicles. Thyroid. 2015;25:455–461. doi: 10.1089/thy.2014.0537. PubMed DOI PMC
Ogundipe VML, Groen AH, Hosper N, Nagle PWK, Hess J, Faber H, Jellema AL, et al. Generation and differentiation of adult tissue-derived human thyroid organoids. Stem Cell Reports. 2021;16:913–925. doi: 10.1016/j.stemcr.2021.02.011. PubMed DOI PMC
Liang J, Qian J, Yang L, Chen X, Wang X, Lin X, Wang X, Zhao B. Modeling Human Thyroid Development by Fetal Tissue-Derived Organoid Culture. Adv Sci (Weinh) 2022;9:e2105568. doi: 10.1002/advs.202105568. PubMed DOI PMC
Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell. 2012;10:398–411. doi: 10.1016/j.stem.2012.01.019. PubMed DOI PMC
Dom G, Dmitriev P, Lambot MA, Van Vliet G, Glinoer D, Libert F, Lefort A, Dumont JE, Maenhaut C. Transcriptomic signature of human embryonic thyroid reveals transition from differentiation to functional maturation. Front Cell Dev Biol. 2021;9:669354. doi: 10.3389/fcell.2021.669354. PubMed DOI PMC
Sjölin G, Holmberg M, Törring O, Byström K, Khamisi S, de Laval D, Abraham-Nordling M, et al. The long-term outcome of treatment for Graves’ hyperthyroidism. Thyroid. 2019;29:1545–1557. doi: 10.1089/thy.2019.0085. PubMed DOI
van der Vaart J, Bosmans L, Sijbesma SF, Knoops K, van de Wetering WJ, Otten HG, Begthel H, et al. Adult mouse and human organoids derived from thyroid follicular cells and modeling of Graves’ hyperthyroidism. Proc Natl Acad Sci U S A. 2021;118:e2117017118. doi: 10.1073/pnas.2117017118. PubMed DOI PMC
Ichioka H, Ida Y, Watanabe M, Ohguro H, Hikage F. Prostaglandin F2α and EP2 agonists, and a ROCK inhibitor modulate the formation of 3D organoids of Grave’s orbitopathy related human orbital fibroblasts. Exp Eye Res. 2021;205:108489. doi: 10.1016/j.exer.2021.108489. PubMed DOI
Dew R, Okosieme O, Dayan C, Eligar V, Khan I, Razvi S, Pearce S, Wilkes S. Clinical, behavioural and pharmacogenomic factors influencing the response to levothyroxine therapy in patients with primary hypothyroidism-protocol for a systematic review. Syst Rev. 2017;6:60. doi: 10.1186/s13643-017-0457-z. PubMed DOI PMC
Watt T, Cramon P, Hegedüs L, Bjorner JB, Bonnema SJ, Rasmussen Å K, Feldt-Rasmussen U, Groenvold M. The thyroid-related quality of life measure ThyPRO has good responsiveness and ability to detect relevant treatment effects. J Clin Endocrinol Metab. 2014;99:3708–3717. doi: 10.1210/jc.2014-1322. PubMed DOI
Romitti M, Tourneur A, de Faria da Fonseca B, Doumont G, Gillotay P, Liao XH, Eski SE, et al. Transplantable human thyroid organoids generated from embryonic stem cells to rescue hypothyroidism. Nat Commun. 2022;13:7057. doi: 10.1038/s41467-022-34776-7. PubMed DOI PMC
Kim S, Park YW, Schiff BA, Doan DD, Yazici Y, Jasser SA, Younes M, et al. An orthotopic model of anaplastic thyroid carcinoma in athymic nude mice. Clin Cancer Res. 2005;11:1713–1721. doi: 10.1158/1078-0432.CCR-04-1908. PubMed DOI
Jian M, Ren L, He G, Lin Q, Tang W, Chen Y, Chen J, et al. A novel patient-derived organoids-based xenografts model for preclinical drug response testing in patients with colorectal liver metastases. J Transl Med. 2020;18:234. doi: 10.1186/s12967-020-02407-8. PubMed DOI PMC
Jankovic J, Dettwiler M, Fernández MG, Tièche E, Hahn K, April-Monn S, Dettmer MS, et al. Validation of immunohistochemistry for canine proteins involved in thyroid iodine uptake and their expression in canine Follicular Cell Thyroid Carcinomas (FTCs) and FTC-derived organoids. Vet Pathol. 2021;58:1172–1180. doi: 10.1177/03009858211018813. PubMed DOI
Chen D, Tan Y, Li Z, Li W, Yu L, Chen W, Liu Y, et al. Organoid cultures derived from patients with papillary thyroid cancer. J Clin Endocrinol Metab. 2021;106:1410–1426. doi: 10.1210/clinem/dgab020. PubMed DOI
Chen D, Su X, Zhu L, Jia H, Han B, Chen H, Liang Q, et al. Papillary thyroid cancer organoids harboring BRAF(V600E) mutation reveal potentially beneficial effects of BRAF inhibitor-based combination therapies. J Transl Med. 2023;21:9. doi: 10.1186/s12967-022-03848-z. PubMed DOI PMC
Pecce V, Sponziello M, Bini S, Grani G, Durante C, Verrienti A. Establishment and maintenance of thyroid organoids from human cancer cells. STAR Protoc. 2022;3:101393. doi: 10.1016/j.xpro.2022.101393. PubMed DOI PMC
Lai X, Xia Y, Zhang B, Li J, Jiang Y. A meta-analysis of Hashimoto’s thyroiditis and papillary thyroid carcinoma risk. Oncotarget. 2017;8:62414–62424. doi: 10.18632/oncotarget.18620. PubMed DOI PMC
He X, Xiong C, Liu A, Zhao W, Xia X, Peng S, Li C, et al. Phagocytosis deficiency of macrophages in NOD.H-2(h4) mice accelerates the severity of iodine-induced autoimmune thyroiditis. Biol Trace Elem Res. 2018;184:196–205. doi: 10.1007/s12011-017-1183-z. PubMed DOI
Wang X, Liu H, Zhang Y, Li J, Teng X, Liu A, Yu X, Shan Z, Teng W. Effects of isolated positive maternal thyroglobulin antibodies on brain development of offspring in an experimental autoimmune thyroiditis model. Thyroid. 2015;25:551–558. doi: 10.1089/thy.2014.0310. PubMed DOI
Vilgelm AE, Bergdorf K, Wolf M, Bharti V, Shattuck-Brandt R, Blevins A, Jones C, et al. Fine-needle aspiration-based patient-derived cancer organoids. iScience. 2020;23:101408. doi: 10.1016/j.isci.2020.101408. PubMed DOI PMC
Xiao H, Liang J, Liu S, Zhang Q, Xie F, Kong X, Guo S, et al. Proteomics and organoid culture reveal the underlying pathogenesis of hashimoto’s thyroiditis. Front Immunol. 2021;12:784975. doi: 10.3389/fimmu.2021.784975. PubMed DOI PMC
Shin W, Wu A, Min S, Shin YC, Fleming RYD, Eckhardt SG, Kim HJ. Spatiotemporal gradient and instability of Wnt induce heterogeneous growth and differentiation of human intestinal organoids. iScience. 2020;23:101372. doi: 10.1016/j.isci.2020.101372. PubMed DOI PMC
Serex L, Sharma K, Rizov V, Bertsch A, McKinney JD, Renaud P. Microfluidic-assisted bioprinting of tissues and organoids at high cell concentrations. Biofabrication. 2021:13. doi: 10.1088/1758-5090/abca80. PubMed DOI
Riley A, Green V, Cheah R, McKenzie G, Karsai L, England J, Greenman J. A novel microfluidic device capable of maintaining functional thyroid carcinoma specimens ex vivo provides a new drug screening platform. BMC Cancer. 2019;19:259. doi: 10.1186/s12885-019-5465-z. PubMed DOI PMC
He A, Powell S, Kyle M, Rose M, Masmila E, Estrada V, Sicklick JK, Molinolo A, Kaushal S. Cryopreservation of viable human tissues: Renewable resource for viable tissue, cell lines, and organoid development. Biopreserv Biobank. 2020;18:222–227. doi: 10.1089/bio.2019.0062. PubMed DOI PMC
Kühnlenz J, Karwelat D, Steger-Hartmann T, Raschke M, Bauer S, Vural Ö, Marx U, Tinwell H, Bars R. A microfluidic thyroid-liver platform to assess chemical safety in humans. Altex. 2023;40:61–82. doi: 10.14573/altex.2108261. PubMed DOI
Spaletta G, Sofroniou M, Barbaro F, Di Conza G, Mosca S, Toni R. A computational template for 3D modelling of the vascular scaffold of the human thyroid gland. Tissue Eng Part A. 2023;29:47–57. doi: 10.1089/ten.TEA.2022.0148. PubMed DOI
Riley A, Jones H, England J, Kuvshinov D, Green V, Greenman J. Identification of soluble tissue-derived biomarkers from human thyroid tissue explants maintained on a microfluidic device. Oncol Lett. 2021;22:780. doi: 10.3892/ol.2021.13041. PubMed DOI PMC