Inhibitory Control in Young Healthy Adults - a tDCS Study

. 2023 Nov 28 ; 72 (5) : 633-644.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38015762

Inhibitory control plays a role in the behavior selection and detection of conflicts. Defects in inhibitory control are an integral part of many neuropsychiatric disorders and the possibilities of influencing it are the subject of active study. Studies have shown and confirmed the activation of the dorsolateral prefrontal cortex (DLPFC) during the Stroop task and other tests involving response inhibition. Non-invasive brain stimulation is an emerging and actively developing group of methods used in cognitive research. In the present study, we used non-invasive, painless, and delicate transcranial direct stimulation (tDCS) for the study of inhibitory control, and to explore the effect of impulsivity on response inhibition ability in young healthy participants. We conducted a cross-over study with cross-hemispheric application of 2 mA tDCS with electrodes placed on the right - cathode, and left - anode - DLPFC. Participants performed a classic Stroop test before and after stimulation. Impulsivity was measured via the personal impulsiveness questionnaire. There was no significant difference in interference score alteration between active and sham stimulations, anodal and sham tDCS both induced slight improvement in Stroop test results. Individual impulsivity in healthy participants showed no influence on their results. Our study adds to the picture and helps to deepen knowledge about the impact of different stimulation parameters on cognitive functions.

Zobrazit více v PubMed

VandenBos GR. APA Dictionary of Psychology. Washington, DC, US: American Psychological Association; 2007.

Dalley JW, Everitt BJ, Robbins TW. Impulsivity, Compulsivity, and Top-Down Cognitive Control. Neuron. 2011;694:680–694. doi: 10.1016/j.neuron.2011.01.020. PubMed DOI

Littel M, Van Den Berg I, Luijten M, Van Rooij AJ, Keemink L, Franken IHA. Error processing and response inhibition in excessive computer game players: An event-related potential study. Addict Biol. 2012;175:934–947. doi: 10.1111/j.1369-1600.2012.00467.x. PubMed DOI

Shen IH, Lee DS, Ling CC. The role of trait impulsivity in response inhibition: Event-related potentials in a stop-signal task. Int J Psychophysiol. 2014;912:80–87. doi: 10.1016/j.ijpsycho.2013.11.004. PubMed DOI

MacDonald AW, Cohen JD, Andrew Stenger V, Carter CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science. 2000;2885472:1835–1838. doi: 10.1126/science.288.5472.1835. PubMed DOI

Koechlin E, Franck N. The Architecture of Cognitive Control in the Human Prefrontal Cortex. Science. 2003;302:1181–1185. doi: 10.1126/science.1088545. PubMed DOI

Frings C, Schneider KK, Fox E. The negative priming paradigm: An update and implications for selective attention. Psychon Bull Rev. 2015;226:1577–1597. doi: 10.3758/s13423-015-0841-4. PubMed DOI

Blasi G, Goldberg TE, Weickert T, Das S, Kohn P, Zoltick B, Bertolino A, et al. Brain regions underlying response inhibition and interference monitoring and suppression. Eur J Neurosci. 2006;236:1658–1664. doi: 10.1111/j.1460-9568.2006.04680.x. PubMed DOI

Zheng D, Oka T, Bokura H, Yamaguchi S. The key locus of common response inhibition network for no-go and stop signals. J Cogn Neurosci. 2008;208:1434–1442. doi: 10.1162/jocn.2008.20100. PubMed DOI

MacLeod CM. Half a century of reseach on the stroop effect: An integrative review. Psychol Bull. 1991;1092:163–203. doi: 10.1037/0033-2909.109.2.163. PubMed DOI

Hommel B. The Simon effect as tool and heuristic. Acta Psychol (Amst) 2011;1362:189–202. doi: 10.1016/j.actpsy.2010.04.011. PubMed DOI

Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;161:143–149. doi: 10.3758/BF03203267. DOI

Mullane JC, Corkum PV, Klein RM, McLaughlin E. Interference control in children with and without ADHD: A systematic review of flanker and simon task performance. Child Neuropsychol. 2009;154:321–342. doi: 10.1080/09297040802348028. PubMed DOI

Munoz DP, Everling S. Look away: The anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci. 2004;53:218–228. doi: 10.1038/nrn1345. PubMed DOI

Luna B. Developmental Changes in Cognitive Control through Adolescence. Adv Child Dev Behav. 2019;37:233–278. doi: 10.1016/S0065-2407(09)03706-9. PubMed DOI PMC

Kochanska G, Coy KC, Murray KT. The Development of Self-Regulation in the First Four Years of Life. Child Dev. 2001;724:1091–1111. doi: 10.1111/1467-8624.00336. PubMed DOI

Sethi A, Mischel W, Aber JL, Shoda Y, Rodriguez ML. The role of strategic attention deployment in development of self-regulation: predicting preschoolers’ delay of gratification from mother-toddler interactions. Dev Psychol. 2000;366:767–777. doi: 10.1037/0012-1649.36.6.767. PubMed DOI

Cragg L, Nation K. Go or no-go? Developmental improvements in the efficiency of response inhibition in mid-childhood. Dev Sci. 2008;116:819–827. doi: 10.1111/j.1467-7687.2008.00730.x. PubMed DOI

Verbruggen F, Logan GD. Automatic and Controlled Response Inhibition: Associative Learning in the Go/No-Go and Stop-Signal Paradigms. J Exp Psychol Gen. 2008;1374:649–672. doi: 10.1037/a0013170. PubMed DOI PMC

Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;186:643–662. doi: 10.1037/h0054651. DOI

Alvarez JA, Emory E. Executive function and the frontal lobes: A meta-analytic review. Neuropsychol Rev. 2006;161:17–42. doi: 10.1007/s11065-006-9002-x. PubMed DOI

Vanderhasselt MA, de Raedt R, Baeken C. Dorsolateral prefrontal cortex and Stroop performance: Tackling the lateralization. Psychon Bull Rev. 2009;163:609–612. doi: 10.3758/PBR.16.3.609. PubMed DOI

Depue BE, Orr JM, Smolker HR, Naaz F, Banich MT. The Organization of Right Prefrontal Networks Reveals Common Mechanisms of Inhibitory Regulation Across Cognitive, Emotional, and Motor Processes. Cereb Cortex. 2016;264:1634–1646. doi: 10.1093/cercor/bhu324. PubMed DOI PMC

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;5273:633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x. PubMed DOI PMC

Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;5710:1899–1901. doi: 10.1212/WNL.57.10.1899. PubMed DOI

Doruk D, Gray Z, Bravo GL, Pascual-Leone A, Fregni F. Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett. 2014;582:27–31. doi: 10.1016/j.neulet.2014.08.043. PubMed DOI

Forogh B, Rafiei M, Arbabi A, Motamed MR, Madani SP, Sajadi S. Repeated sessions of transcranial direct current stimulation evaluation on fatigue and daytime sleepiness in Parkinson’s disease. Neurol Sci. 2017;382:249–254. doi: 10.1007/s10072-016-2748-x. PubMed DOI

Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS, Fricke K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol. 2005;5681:291–303. doi: 10.1113/jphysiol.2005.092429. PubMed DOI PMC

Nitsche MA, Doemkes S, Karaköse T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol. 2007;974:3109–3117. doi: 10.1152/jn.01312.2006. PubMed DOI

Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimulat. 2008;13:206–223. doi: 10.1016/j.brs.2008.06.004. PubMed DOI

Grundey J, Barlay J, Batsikadze G, Kuo MF, Paulus W, Nitsche M. Nicotine modulates human brain plasticity via calcium-dependent mechanisms. J Physiol. 2018;59622:5429–5441. doi: 10.1113/JP276502. PubMed DOI PMC

Dedoncker J, Brunoni AR, Baeken C, Vanderhasselt MA. A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimulat. 2016;94:501–517. doi: 10.1016/j.brs.2016.04.006. PubMed DOI

Wassermann EM, Grafman J. Recharging cognition with DC brain polarization. Trends Cogn Sci. 2005;911:503–505. doi: 10.1016/j.tics.2005.09.001. PubMed DOI

Kuo MF, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci. 2012;433:192–199. doi: 10.1177/1550059412444975. PubMed DOI

Hill AT, Fitzgerald PB, Hoy KE. Effects of Anodal Transcranial Direct Current Stimulation on Working Memory: A Systematic Review and Meta-Analysis of Findings from Healthy and Neuropsychiatric Populations. Brain Stimulat. 2016;92:197–208. doi: 10.1016/j.brs.2015.10.006. PubMed DOI

Plewnia C, Schroeder PA, Wolkenstein L. Targeting the biased brain: Non-invasive brain stimulation to ameliorate cognitive control. Lancet Psychiatry. 2015;24:351–356. doi: 10.1016/S2215-0366(15)00056-5. PubMed DOI

Wolkenstein L, Plewnia C. Amelioration of cognitive control in depression by transcranial direct current stimulation. Biol Psychiatry. 2013;737:646–651. doi: 10.1016/j.biopsych.2012.10.010. PubMed DOI

Wolkenstein L, Zeiller M, Kanske P, Plewnia C. Induction of a depression-like negativity bias by cathodal transcranial direct current stimulation. Cortex. 2014;59:103–112. doi: 10.1016/j.cortex.2014.07.011. PubMed DOI

Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Théoret H, Boggio PS, Fregni F. Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci. 2007;2723:6212–6218. doi: 10.1523/JNEUROSCI.0314-07.2007. PubMed DOI PMC

Fecteau S, Boggio P, Fregni F, Pascual-Leone A. Modulation of untruthful responses with non-invasive brain stimulation. Front Psychiatry. 2013;3:97. doi: 10.3389/fpsyt.2012.00097. PubMed DOI PMC

Jeon SY, Han SJ. Improvement of the working memory and naming by transcranial direct current stimulation. Ann Rehabil Med. 2012;365:585–595. doi: 10.5535/arm.2012.36.5.585. PubMed DOI PMC

Loftus AM, Yalcin O, Baughman FD, Vanman EJ, Hagger MS. The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain Behav. 2015;5:e00332. doi: 10.1002/brb3.332. PubMed DOI PMC

Frings C, Brinkmann T, Friehs MA, van Lipzig T. Single session tDCS over the left DLPFC disrupts interference processing. Brain Cogn. 2018;120:1–7. doi: 10.1016/j.bandc.2017.11.005. PubMed DOI

Weller S, Nitsche MA, Plewnia C. Enhancing cognitive control training with transcranial direct current stimulation: a systematic parameter study. Brain Stimulat. 2020;135:1358–1369. doi: 10.1016/j.brs.2020.07.006. PubMed DOI

Chase HW, Boudewyn MA, Carter CS, Phillips ML. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Mol Psychiatry. 2020;25:397–407. doi: 10.1038/s41380-019-0499-9. PubMed DOI PMC

Coutlee CG, Politzer CS, Hoyle RH, Huettel SA. An Abbreviated Impulsiveness Scale (ABIS) Constructed through Confirmatory Factor Analysis of the BIS-11. Arch Sci Psychol. 2014;2:1–12. doi: 10.1037/arc0000005. PubMed DOI PMC

Golden CJ, Freshwater SM. Stroop Color and Word Test. SAGE Encycl Abnorm Clin Psychol. 1978

R Core Team. R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. 2021

Pinheiro J, Bates D, DebRoy S, Sarkar D Team RC. nlme: Linear and Nonlinear Mixed Effects Models. 2021

Plewnia C, Zwissler B, Längst I, Maurer B, Giel K, Krüger R. Effects of transcranial direct current stimulation (tDCS) on executive functions: Influence of COMT Val/Met polymorphism. Cortex. 2013;497:1801–1807. doi: 10.1016/j.cortex.2012.11.002. PubMed DOI

Nieratschker V, Kiefer C, Giel K, Krüger R, Plewnia C. The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition. Brain Stimulat. 2015;82:283–288. doi: 10.1016/j.brs.2014.11.009. PubMed DOI

Pellegrini M, Zoghi M, Jaberzadeh S. Can genetic polymorphisms predict response variability to anodal transcranial direct current stimulation of the primary motor cortex? Eur J Neurosci. 2021;535:1569–1591. doi: 10.1111/ejn.15002. PubMed DOI

Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;5917:1987–2000. doi: 10.1113/jphysiol.2012.249730. PubMed DOI PMC

Jamil A, Batsikadze G, Kuo H-I, Labruna L, Hasan A, Paulus W, Nitsche MA. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol. 2017;5954:1273–1288. doi: 10.1113/JP272738. PubMed DOI PMC

Hassanzahraee M, Nitsche MA, Zoghi M, Jaberzadeh S. Determination of anodal tDCS duration threshold for reversal of corticospinal excitability: An investigation for induction of counter-regulatory mechanisms. Brain Stimulat. 2020;133:832–839. doi: 10.1016/j.brs.2020.02.027. PubMed DOI

Friehs MA, Frings C. Pimping inhibition: Anodal tDCS enhances stop-signal reaction time. J Exp Psychol Hum Percept Perform. 2018;44:1933–1945. doi: 10.1037/xhp0000579. PubMed DOI

Friehs MA, Frings C. Cathodal tDCS increases stop-signal reaction time. Cogn Affect Behav Neurosci. 2019;195:1129–1142. doi: 10.3758/s13415-019-00740-0. PubMed DOI

Khan A, Wang X, Ti CHE, Tse CY, Tong KY. Anodal transcranial direct current stimulation of anterior cingulate cortex modulates subcortical brain regions resulting in cognitive enhancement. Front Hum Neurosci. 2020;14:584136. doi: 10.3389/fnhum.2020.584136. PubMed DOI PMC

Verveer I, Hill AT, Franken IHA, Yücel M, van Dongen JDM, Segrave R. Modulation of control: Can HD-tDCS targeting the dACC reduce impulsivity? Brain Res. 2021;1756:147282. doi: 10.1016/j.brainres.2021.147282. PubMed DOI

Weidler C, Habel U, Wallheinke P, Wagels L, Hofhansel L, Ling S, Blendy JA, Clemens B. Consequences of prefrontal tDCS on inhibitory control and reactive aggression. Soc Cogn Affect Neurosci. 2022;171:120–130. doi: 10.1093/scan/nsaa158. PubMed DOI PMC

Cheng GLF, Lee TMC. Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex. Soc Neurosci. 2016;114:353–364. doi: 10.1080/17470919.2015.1085895. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...