Topographic depressions can provide climate and resource microrefugia for biodiversity

. 2023 Nov 17 ; 26 (11) : 108202. [epub] 20231021

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38026156
Odkazy

PubMed 38026156
PubMed Central PMC10656275
DOI 10.1016/j.isci.2023.108202
PII: S2589-0042(23)02279-4
Knihovny.cz E-zdroje

Microrefugia are often located within topographically complex regions where stable environmental conditions prevail. Most of the studies concerning the distributions of climate change-sensitive species have emphasized the dominance of cold air pooling over other environmental factors, such as resource availability. There is a shortage of information on the relationships among topography-related microsite diversity, microclimate, resource availability, and species composition in microrefugia. To fill this knowledge gap, we studied the effects of microclimatic conditions and soil resources on plant species occurrence within and adjacent to 30 large topographic depressions (i.e., dolines) in two distant karst regions. Our results showed that both microclimate and soil resource availability may play a key role in maintaining climate change-sensitive species and biodiversity in dolines; therefore, they may simultaneously act as climate and resource microrefugia. Establishing climate-smart conservation priorities and strategies is required to maintain or increase the refugial capacity of such safe havens.

Zobrazit více v PubMed

Rull V. J. Biogeogr. 2009;36:481–484. doi: 10.1111/j.1365-2699.2008.02023.x. DOI

Keppel G., Van Niel K.P., Wardell-Johnson G.W., Yates C.J., Byrne M., Mucina L., Schut A.G.T., Hopper S.D., Franklin S.E. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Global Ecol. Biogeogr. 2012;21:393–404. doi: 10.1111/j.1466-8238.2011.00686.x. DOI

Finocchiaro M., Médail F., Saatkamp A., Diadema K., Pavon D., Meineri E. Bridging the gap between microclimate and microrefugia: A bottom-up approach reveals strong climatic and biological offsets. Global Change Biol. 2023;29:1024–1036. doi: 10.1111/gcb.16526. PubMed DOI PMC

Greiser C., Ehrlén J., Meineri E., Hylander K. Hiding from the climate: Characterizing microrefugia for boreal forest understory species. Global Change Biol. 2020;26:471–483. doi: 10.1111/gcb.14874. PubMed DOI PMC

Radosavljević I., Satovic Z., di Pietro R., Jug Dujaković M., Varga F., Škrtić D., Liber Z. Phylogeographic structure of common sage (Salvia officinalis L.) reveals microrefugia throughout the Balkans and colonizations of the Apennines. Sci. Rep. 2022;12:15726. doi: 10.1038/s41598-022-20055-4. PubMed DOI PMC

McLaughlin B.C., Ackerly D.D., Klos P.Z., Natali J., Dawson T.E., Thompson S.E. Hydrologic refugia, plants, and climate change. Global Change Biol. 2017;23:2941–2961. doi: 10.1111/gcb.13629. PubMed DOI

Selwood K.E., Zimmer H.C. Refuges for biodiversity conservation: a review of the evidence. Biol. Conserv. 2020;245:108502. doi: 10.1016/j.biocon.2020.108502. DOI

Fragnière Y., Gremaud J., Pesenti E., Bétrisey S., Petitpierre B., Guisan A., Kozlowski G. Mapping habitats sensitive to overgrazing in the Swiss Northern Alps using habitat suitability modelling. Biol. Conserv. 2022;274:109742. doi: 10.1016/j.biocon.2022.109742. DOI

Dobrowski S.Z. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biol. 2011;17:1022–1035. doi: 10.1111/j.1365-2486.2010.02263.x. DOI

Deák B., Kovács B., Rádai Z., Apostolova I., Kelemen A., Kiss R., Lukács K., Palpurina S., Sopotlieva D., Báthori F., Valkó O. Linking environmental heterogeneity and plant diversity: the ecological role of small natural features in homogeneous landscapes. Sci. Total Environ. 2021;763:144199. doi: 10.1016/j.scitotenv.2020.144199. PubMed DOI

Bátori Z., Gallé R., Gallé-Szpisjak N., Császár P., Nagy D.D., Lőrinczi G., Torma A., Tölgyesi C., Maák I.E., Frei K., et al. Topographic depressions provide potential microrefugia for ground-dwelling arthropods. Elementa. 2022;10:00084. doi: 10.1525/elementa.2021.00084. DOI

Lenoir J., Hattab T., Pierre G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography. 2017;40:253–266. doi: 10.1111/ecog.02788. DOI

Pastore M.A., Classen A.T., D'Amato A.W., Foster J.R., Adair E.C. Cold-air pools as microrefugia for ecosystem functions in the face of climate change. Ecology. 2022;103:e3717. doi: 10.1002/ecy.3717. PubMed DOI

Gavin D.G., Fitzpatrick M.C., Gugger P.F., Heath K.D., Rodríguez-Sánchez F., Dobrowski S.Z., Hampe A., Hu F.S., Ashcroft M.B., Bartlein P.J., et al. Climate refugia: Joint inference from fossil records, species distribution models and phylogeography. New Phytol. 2014;204:37–54. doi: 10.1111/nph.12929. PubMed DOI

Bátori Z., Vojtkó A., Farkas T., Szabó A., Havadtői K., Vojtkó A.E., Tölgyesi C., Cseh V., Erdős L., Maák I.E., Keppel G. Large- and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. Ann. Bot. 2017;119:301–309. doi: 10.1093/aob/mcw233. PubMed DOI PMC

Raschmanová N., Miklisová D., Kováč Ľ. A unique small-scale microclimatic gradient in a temperate karst harbours exceptionally high diversity of soil Collembola. Int. J. Speleol. 2018;47:247–262. doi: 10.5038/1827-806X.47.2.2194. DOI

White T.H., Collazo J.A., Vilella F.J., Guerrero S.A. Effects of Hurricane Georges on habitat use by captive-reared Hispaniolan parrots (Amazona ventralis) released in the Dominican Republic. Ornitol. Neotrop. 2005;16:405–417.

Garfì G., Carimi F., Fazan L., Gristina A.S., Kozlowski G., Livreri Console S., Motisi A., Pasta S. From glacial refugia to hydrological microrefugia: Factors and processes driving the persistence of the climate relict tree Zelkova sicula. Ecol. Evol. 2021;11:2919–2936. doi: 10.1002/ece3.7253. PubMed DOI PMC

Peñuelas J., Filella I. Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain. Environ. Exp. Bot. 2003;49:201–208. doi: 10.1016/S0098-8472(02)00070-9. DOI

Jobbágy E.G., Nosetto M.D., Villagra P.E., Jackson R.B. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol. Appl. 2011;21:678–694. doi: 10.1890/09-1427.1. PubMed DOI

Jeanpert J., Genthon P., Maurizot P., Folio J.-L., Vendé-Leclerc M., Sérino J., Join J.-L., Iseppi M. Morphology and distribution of dolines on ultramafic rocks from airborne LiDAR data: the case of southern Grande Terre in New Caledonia (SW Pacific) Earth Surf. Process. Landforms. 2016;41:1854–1868. doi: 10.1002/esp.3952. DOI

Öztürk M.Z., Savran A. An oasis in the Central Anatolian steppe: The ecology of a collapse doline. Acta Biologica Turcica. 2020;33:100–113.

Čarni A., Čonč Š., Breg Valjavec M. Landform-vegetation units in karstic depressions (dolines) evaluated by indicator plant species and Ellenberg indicator values. Ecol. Indicat. 2022;135:108572. doi: 10.1016/j.ecolind.2022.108572. DOI

White W.B., Culver D.C., Herman J.S., Kane T.C., Mylroie J.E. Karst Lands. The dissolution of carbonate rock produces unique landscapes and poses significant hydrological and environmental concerns. Am. Sci. 1995;83:450–459.

Olesen J., Pöllabauer C., Sigvardt Z.M.S., Rogers D.C. A new species of Lynceus Müller, 1776 from New Caledonia (Crustacea. Branchiopoda: Laevicaudata) from dolines, with remarks on zoogeography. Eur J. Taxon. 2016;224:1–18. doi: 10.5852/ejt.2016.224. DOI

Wang K., Zhang C., Chen H., Yue Y., Zhang W., Zhang M., Qi X., Fu Z. Karst landscapes of China: patterns, ecosystem processes and services. Landsc. Ecol. 2019;34:2743–2763. doi: 10.1007/s10980-019-00912-w. DOI

Sutcharit C., Jeratthitikul E., Pholyotha A., Lin A., Panha S. Molecular phylogeny reveals high diversity and endemism in the limestone karst-restricted land snail genus Sophina Benson, 1859 from Myanmar (Eupulmonata: Helicarionidae), with description of four new species. J. Zool. Syst. Evol. Res. 2020;58:957–981. doi: 10.1111/jzs.12420. DOI

Su Y., Tang Q., Mo F., Xue Y. Karst tiankengs as refugia for indigenous tree flora amidst a degraded landscape in southwestern China. Sci. Rep. 2017;7:4249. doi: 10.1038/s41598-017-04592-x. PubMed DOI PMC

Breg Valjavec M., Zorn M., Čarni A. Bioindication of human-induced soil degradation in enclosed karst depressions (dolines) using Ellenberg indicator values (Classical Karst, Slovenia) Sci. Total Environ. 2018;640–641:117–126. doi: 10.1016/j.scitotenv.2018.05.294. PubMed DOI

Bátori Z., Vojtkó A., Maák I.E., Lőrinczi G., Farkas T., Kántor N., Tanács E., Kiss P.J., Juhász O., Módra G., et al. Karst dolines provide diverse microhabitats for different functional groups in multiple phyla. Sci. Rep. 2019;9:7176. doi: 10.1038/s41598-019-43603-x. PubMed DOI PMC

Lazarević P., Lazarević M., Krivošej Z., Stevanović V. On the distribution of Dracocephalum ruyschiana (Lamiaceae) in the Balkan Peninsula. Phytol. Balc. 2009;15:175–179.

Marcin M., Raschmanová N., Miklisová D., Kováč L.'. Microclimate and habitat heterogeneity as important drivers of soil Collembola in a karst collapse doline in the temperate zone. Invertebr. Biol. 2021;140:e12315. doi: 10.1111/ivb.12315. DOI

Egli B., Gerstberger P., Greuter W., Risse H. Horstrissea dolinicola, a new genus and species of umbels (Umbelliferae, Apiaceae) from Kriti (Greece) Willdenowia. 1990;19:389–399.

Özkan K., Gulsoy S., Mert A., Ozturk M., Muys B. Plant distribution-altitude and landform relationships in karstic sinkholes of Mediterranean region of Turkey. J. Environ. Biol. 2010;31:51–60. PubMed

Fazan L., Gwiazdowicz D.J., Fragnière Y., Fałtynowicz W., Ghosn D., Remoundou I., Rusińska A., Urbański P., Pasta S., Garfì G., Kozlowski G. Factors influencing the diversity and distribution of epiphytic lichens and bryophytes on the relict tree Zelkova abelicea (Lam.) Boiss. (Ulmaceae) Lichenologist (Lond.) 2022;54:195–212. doi: 10.1017/S0024282922000159. DOI

Marcin M., Raschmanová N., Miklisová D., Šupinský J., Kaňuk J., Kováč Ľ. Karst dolines support highly diversified soil Collembola communities – possible refugia in a warming climate? Diversity. 2022;14:1037. doi: 10.3390/d14121037. DOI

Gargano D., Vecchio G., Bernardo L. Plant-soil relationships in fragments of Mediterranean snow-beds: ecological and conservation implications. Plant Ecol. 2010;207:175–189. doi: 10.1007/s11258-009-9663-7. DOI

Bátori Z., Erdős L., Gajdács M., Barta K., Tobak Z., Frei K., Tölgyesi C. Managing climate change microrefugia for vascular plants in forested karst landscapes. For. Ecol. Manage. 2021;496:119446. doi: 10.1016/j.foreco.2021.119446. DOI

Lévesque M., Walthert L., Weber P. Soil nutrients influence growth response of temperate tree species to drought. J. Ecol. 2016;104:377–387. doi: 10.1111/1365-2745.12519. DOI

Hulshof C.M., Spasojevic M.J. The edaphic control of plant diversity. Global Ecol. Biogeogr. 2020;29:1634–1650. doi: 10.1111/geb.13151. DOI

Ackerly D.D., Kling M.M., Clark M.L., Papper P., Oldfather M.F., Flint A.L., Flint L.E. Topoclimates, refugia, and biotic responses to climate change. Front. Ecol. Environ. 2020;18:288–297. doi: 10.1002/fee.2204. DOI

Bátori Z., Valkó O., Vojtkó A., Tölgyesi C., Farkas T., Frei K., Hábenczyus A.A., Tóth Á., Li G., Rádai Z., et al. Environmental heterogeneity increases the conservation value of small natural features in karst landscapes. Sci. Total Environ. 2023;872:162120. doi: 10.1016/j.scitotenv.2023.162120. PubMed DOI

Erdős L., Török P., Veldman J.W., Bátori Z., Bede-Fazekas Á., Magnes M., Kröel-Dulay G., Tölgyesi C. How climate, topography, soils, herbivores, and fire control forest–grassland coexistence in the Eurasian forest-steppe. Biol. Rev. 2022;97:2195–2208. doi: 10.1111/brv.12889. PubMed DOI PMC

Whiteman C.D., Haiden T., Pospichal B., Eisenbach S., Steinacker R. Minimum temperatures, diurnal temperature ranges, and temperature inversion in limestone sinkholes of different sizes and shapes. J. Appl. Meteorol. 2004;43:1224–1236. doi: 10.1175/1520-0450(2004)043<1224:MTDTRA>2.0.CO;2. DOI

Morelli T.L., Daly C., Dobrowski S.Z., Dulen D.M., Ebersole J.L., Jackson S.T., Lundquist J.D., Millar C.I., Maher S.P., Monahan W.B., et al. Managing climate change refugia for climate adaptation. PLoS One. 2016;11:e0159909. doi: 10.1371/journal.pone.0159909. PubMed DOI PMC

Le P.V.V., Kumar P. Power law scaling of topographic depressions and their hydrologic connectivity. Geophys. Res. Lett. 2014;41:1553–1559. doi: 10.1002/2013GL059114. DOI

Tauc F., Houle D., Dupuch A., Doyon F., Maheu A. Microtopographic refugia against drought in temperate forests: Lower water availability but more extensive fine root system in mounds than in pits. For. Ecol. Manage. 2020;476:118439. doi: 10.1016/j.foreco.2020.118439. DOI

Roy S., Singh J.S. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest. J. Ecol. 1994;82:503–509.

Bátori Z., Vojtkó A., Keppel G., Tölgyesi C., Čarni A., Zorn M., Farkas T., Erdős L., Kiss P.J., Módra G., Breg Valjavec M. Anthropogenic disturbances alter the conservation value of karst dolines. Biodivers. Conserv. 2020;29:503–525. doi: 10.1007/s10531-019-01896-4. DOI

Schaetzl R.J., Johnson D.L., Burns S.F., Small T.W. Tree uprooting: review of terminology, process, and environmental implications. Can. J. For. Res. 1989;19:1–11. doi: 10.1139/x89-001. DOI

Bátori Z., Csiky J., Farkas T., Vojtkó A., Erdős L., Kovács D., Wirth T., Körmöczi L., Vojtkó A. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change. Int. J. Speleol. 2014;43:15–26. doi: 10.5038/1827-806X.43.1.2. DOI

Ford K.R., Ettinger A.K., Lundquist J.D., Raleigh M.S., Hille Ris Lambers J. Spatial heterogeneity in ecologically important climate variables at coarse and fine spatial scales in a high-snow mountain landscape. PLoS One. 2013;8:e65008. doi: 10.1371/journal.pone.0065008. PubMed DOI PMC

Dendoncker M., Vincke C., Bazan S., Madingou M.P.N., Taugourdeau S. The size of topographic depressions in a Sahelian savanna is a driver of woody vegetation diversity. SSRN Journal. 2023;210:104923. doi: 10.2139/ssrn.4219049. DOI

Hunter M.L., Acuña V., Bauer D.M., Bell K.P., Calhoun A.J., Felipe-Lucia M.R., Fitzsimons J.A., González E., Kinnison M., Lindenmayer D., et al. Conserving small natural features with large ecological roles: a synthetic overview. Biol. Conserv. 2017;211:88–95. doi: 10.1016/j.biocon.2016.12.020. DOI

Tang C.Q., Matsui T., Ohashi H., Nualart N., Herrando-Moraira S., Dong Y.-F., Grote P.J., Van Ngoc N., Van Sam H., Li S., et al. Identifying long-term stable refugia for dominant Castanopsis species of evergreen broad-leaved forests in East Asia: A tool for ensuring their conservation. Biol. Conserv. 2022;273:109663. doi: 10.1016/j.biocon.2022.109663. DOI

Ramalho Q., Vale M.M., Manes S., Diniz P., Malecha A., Prevedello J.A. Evidence of stronger range shift response to ongoing climate change by ectotherms and high-latitude species. Biol. Conserv. 2023;279:109911. doi: 10.1016/j.biocon.2023.109911. DOI

Ackerly D.D., Loarie S.R., Cornwell W.K., Weiss S.B., Hamilton H., Branciforte R., Kraft N.J.B. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 2010;16:476–487. doi: 10.1111/j.1472-4642.2010.00654.x. DOI

Ulrey C., Quintana-Ascencio P.F., Kauffman G., Smith A.B., Menges E.S. Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biol. Conserv. 2016;200:80–92. doi: 10.1016/j.biocon.2016.05.028. DOI

Keppel G., Mokany K., Wardell-Johnson G.W., Phillips B.L., Welbergen J.A., Reside A.E. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 2015;13:106–112. doi: 10.1890/140055. DOI

Silvertown J., Araya Y., Gowing D. Hydrological niches in terrestrial plant communities: a review. J. Ecol. 2015;103:93–108. doi: 10.1111/1365-2745.12332. DOI

Corlett R.T., Westcott D.A. Will plant movements keep up with climate change? Trends Ecol. Evol. 2013;28:482–488. doi: 10.1016/j.tree.2013.04.003. PubMed DOI

Dainese M., Bragazza L. Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Bot. 2012;122:11–21. doi: 10.1007/s00035-012-0101-4. DOI

Bátori Z., Tölgyesi C., Li G., Erdős L., Gajdács M., Kelemen A. Forest age and topographic position jointly shape the species richness and composition of vascular plants in karstic habitats. Ann. For. Sci. 2023;80:16. doi: 10.1186/s13595-023-01183-x. DOI

Kermavnar J., Ferlan M., Marinšek A., Eler K., Kobler A., Kutnar L. Effects of various cutting treatments and topographic factors on microclimatic conditions in Dinaric fir-beech forests. Agric. For. Meteorol. 2020;295:e108186. doi: 10.1016/j.agrformet.2020.108186. DOI

De Frenne P., Lenoir J., Luoto M., Scheffers B.R., Zellweger F., Aalto J., Ashcroft M.B., Christiansen D.M., Decocq G., De Pauw K., et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biol. 2021;27:2279–2297. doi: 10.1111/gcb.15569. PubMed DOI

Hansen L., Hoffman J., Drews C., Mielbrecht E. Designing climate-smart conservation: guidance and case studies. Conserv. Biol. 2010;24:63–69. doi: 10.1111/j.1523-1739.2009.01404.x. PubMed DOI

Bates D.W., Mächler M., Bolker B., Walker S. Fitting linear mixed-effects models using lme4. BMJ Qual. Saf. 2015;24:1–3. doi: 10.18637/jss.v067.i01. DOI

Fox J., Weisberg S. Sage; 2019. An R Companion to Applied Regression, third ed.

Lenth R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.6.0. 2021. https://cran.r-project.org/web/packages/emmeans/index.html

Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R. Vegan: Community ecology package. 2018. https://cran.r-project.org/web/packages/vegan/index.html

Tichý L. JUICE, software for vegetation classification. J. Veg. Sci. 2002;13:451–453. doi: 10.1111/j.1654-1103.2002.tb02069.x. DOI

Dövényi Z., editor. Magyarország kistájainak katasztere (Inventory of microregions in Hungary) MTA Földrajztudományi Kutatóintézet; 2010.

IUSS Working Group WRB . FAO; 2015. World Reference Base for Soil Resources 2014. Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106.

Virók V., Farkas R., Farkas T., Šuvada R., Vojtkó A. Aggteleki Nemzeti Park Igazgatóság; 2016. A Gömör-Tornai-Karszt Flórája. Enumeráció (Vascular Flora of the Gömör-Torna Karst, Enumeration)

Virók V., Farkas R., Farkas T., Szűts F., Vojtkó A. Aggteleki Nemzeti Park Igazgatóság; 2014. A Gömör-Tornai-Karszt Flórája. Általános Rész (Vascular Flora of the Gömör-Torna Karst, General Information)

Erdős L., Kröel-Dulay G., Bátori Z., Kovács B., Németh C., Kiss P.J., Tölgyesi C. Habitat heterogeneity as a key to high conservation value in forest-grassland mosaics. Biol. Conserv. 2018;226:72–80. doi: 10.1016/j.biocon.2018.07.029. DOI

Farsang A., Babcsányi I., Ladányi Z., Perei K., Bodor A., Csányi K.T., Barta K. Evaluating the effects of sewage sludge compost applications on the microbial activity, the nutrient and heavy metal content of a Chernozem soil in a field survey. Arabian J. Geosci. 2020;13:982. doi: 10.1007/s12517-020-06005-2. DOI

Soó R. Akadémiai Kiadó; 1980. A Magyar Flóra És Vegetáció Rendszertani-Növényföldrajzi Kézikönyve VI (Systematic-Geobotanical Synopsis of the Flora and Vegetation of Hungary VI)

Király G. Sopron; 2007. A Magyarországi Edényes Flóra Veszélyeztetett Fajai (Red List of the Vascular Flora of Hungary). Private Edition.

Czúcz B., Gálhidy L., Mátyás C. Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann. For. Sci. 2011;68:99–108. doi: 10.1007/s13595-011-0011-4. DOI

Kasper J., Weigel R., Walentowski H., Gröning A., Petritan A.M., Leuschner C. Climate warming-induced replacement of mesic beech by thermophilic oak forests will reduce the carbon storage potential in aboveground biomass and soil. Ann. For. Sci. 2021;78:89. doi: 10.1007/s13595-021-01081-0. DOI

Borhidi A. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 1995;39:97–181.

Lengyel A., Purger D., Csiky J. Classification of mesic grasslands and their transitions of South Transdanubia (Hungary) Acta Bot. Croat. 2012;71:31–50. doi: 10.2478/v10184-011-0060-7. DOI

Tölgyesi C., Bátori Z., Erdős L. Using statistical tests on relative ecological indicator values to compare vegetation units – Different approaches and weighting methods. Ecol. Indicat. 2014;36:441–446. doi: 10.1016/j.ecolind.2013.09.002. DOI

Woods C.L., Maleta K., Ortmann K. Plant–plant interactions change during succession on nurse logs in a northern temperate rainforest Ecol. Evolution. 2021;11:9631–9641. doi: 10.1002/ece3.7786. PubMed DOI PMC

R Core Team R. Computer software R Foundation for Statistical Computing; 2022. A Language and Environment for Statistical Computing (4.2.2)https://www.R-project.org

Tichý L., Chytrý M. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 2006;17:809–818. doi: 10.1111/j.1654-1103.2006.tb02504.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...