Chitosan-PEI passivated carbon dots for plasmid DNA and miRNA-153 delivery in cancer cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38034707
PubMed Central
PMC10682126
DOI
10.1016/j.heliyon.2023.e21824
PII: S2405-8440(23)09032-1
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Carbon dots, Cell line, Chitosan, Micro RNA, PEI, Transfection,
- Publikační typ
- časopisecké články MeSH
These days carbon dots have been developed for multiple biomedical applications. In the current study, the transfection potential of synthesized carbon dots from single biopolymers such as chitosan, PEI-2kDa, and PEI-25kDa (CS-CDs, PEI2-CDs, and PEI25-CDs) and by combining two biopolymers (CP2-CDs and CP25-CDs) through a bottom-up approach have been investigated. The characterization studies revealed successful synthesis of fluorescent, positively charged carbon dots <20 nm in size. Synthesized carbon dots formed a stable complex with plasmid DNA (EGFP-N1) and miRNA-153 that protected DNA/miRNA from serum-induced degradation. In-vitro cytotoxicity analysis revealed minimal cytotoxicity in cancer cell lines (A549 and MDA-MB-231). In-vitro transfection of EGFP-N1 plasmid DNA with PEI2-CDs, PEI25-CDs and CP25-CDs demonstrated that these CDs could strongly transfect A549 and MDA-MB-231 cells. The highest EGFP-N1 plasmid transfection efficiency was observed with PEI2-CDs at a weight ratio of 32:1. PEI25-CDs polyplex showed maximum transfection at a weight ratio of 8:1 in A549 at a weight ratio of 16:1 in MDA-MB-231 cells. CP25-CDs exhibited the highest transfection at a weight ratio of 16:1 in both cell lines. The in-vitro transfection of target miRNA, i.e., miR-153 in A549 and MDA-MB-231 cells with PEI2-CDs, PEI25-CDs, and CP25-CDs suggested successful transfer of miR-153 into cells which induced significant cell death in both cell lines. Importantly, CS-CDs and CP2-CDs could be tolerated by cells up to 200 μg/mL concentration, while PEI2-CDs, PEI25-CDs, and CP25-CDs showed non-cytotoxic behavior at low concentrations (25 μg/mL). Together, these results suggest that a combination of carbon dots synthesized from chitosan and PEI (CP25-CDs) could be a novel vector for transfection nucleic acids that can be utilized in cancer therapy.
Department of Biotechnology MMEC Maharishi Markandeshwar Mullana 133207 India
Department of Chemistry Physical Sciences Mizoram University Aizawl 796004 India
Faculty of Applied Sciences and Biotechnology Shoolini University Solan 173229 India
Gilbert and Rose Marie Chagoury School of Medicine Lebanese American University Beirut Lebanon
School of Advance Chemical Sciences Shoolini University Solan 173229 India
Zobrazit více v PubMed
Thakur S., Saini R.V., Singh P., RaizadA P., Thakur V.K., Saini A.K. Nanoparticles as an emerging tool to alter the gene expression: preparation and conjugation methods. Mater. Today Chem. 2020;17:1–16. doi: 10.1016/j.mtchem.2020.100295. DOI
Yuan F., Li S., Fan Z., Meng X., Fan L., Yang S. Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today. 2016;11(5):565–586. doi: 10.1016/j.nantod.2016.08.006. DOI
Mehta V.N., Jha S., Kailasa S.K. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater. Sci. Eng. C. 2014;38:20–27. doi: 10.1016/j.msec.2014.01.038. PubMed DOI
Mehta V.N., Jha S., Singhal R.K., Kailasa S.K. Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J. Chem. 2014;38(12):6152–6160. doi: 10.1039/C4NJ00840E. DOI
Mehta V.N., Jha S., Basu H., Singhal R.K., Kailasa S.K. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensor. Actuator. B Chem. 2015;213:434–443. doi: 10.1016/j.snb.2015.02.104. DOI
Kasibabu B.S., D'souza S.L., Jha S., Singhal R.K., Basu H., Kailasa S.K. One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Anal. Methods. 2015;7(6):2373–2378. doi: 10.1039/C4AY02737J. DOI
Kasibabu B.S., D’souza S.L., Jha S., Kailasa S.K. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice. J. Fluoresc. 2015;25(4):803–810. doi: 10.1007/s10895-015-1595-0. PubMed DOI
Bhamore J.R., Jha S., Singhal R.K., Kailasa S.K. Synthesis of water dispersible fluorescent carbon nanocrystals from Syzygium cumini fruits for the detection of Fe3+ ion in water and biological samples and imaging of Fusarium avenaceum cells. J. Fluoresc. 2017;27(1):125–134. doi: 10.1007/s10895-016-1940-y. PubMed DOI
D'souza S.L., Deshmukh B., Bhamore J.R., Rawat K.A., Lenka N., Kailasa S.K. Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system. RSC Adv. 2016;6(15):12169–12179. doi: 10.1039/C5RA24621K. DOI
D'souza S.L., Deshmukh B., Rawat K.A., Bhamore J.R., Lenka N., Kailasa S.K. Fluorescent carbon dots derived from vancomycin for flutamide drug delivery and cell imaging. New J. Chem. 2016;40(8):7075–7083. doi: 10.1039/C6NJ00358C. DOI
Mehta V.N., S Chettiar S., Bhamore J.R., Kailasa S.K., Patel R.M. Green synthetic approach for synthesis of fluorescent carbon dots for lisinopril drug delivery system and their confirmations in the cells. J. Fluoresc. 2017;27(1):111–124. PubMed
Shen L.M., Liu J. New development in carbon quantum dots technical applications. Talanta. 2016;156:245–256. doi: 10.1016/j.talanta.2016.05.028. PubMed DOI
Zhang J., Yu S.H. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today. 2016;19(7):382–393. doi: 10.1016/j.mattod.2015.11.008. DOI
Wang Q., Zhang C., Shen G., Liu H., Fu H., Cui D. Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J. Nanobiotechnol. 2014;12(1):1–2. doi: 10.1186/s12951-014-0058-0. PubMed DOI PMC
Kim S., Choi Y., Park G., Won C., Park Y.J., Lee Y., Kim B.S., Min D.H. Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res. 2017;10(2):503–519. doi: 10.1007/s12274-016-1309-1. DOI
Yang X., Wang Y., Shen X., Su C., Yang J., Piao M., Jia F., Gao G., Zhang L., Lin Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J. Colloid Interface Sci. 2017;492:1–7. doi: 10.1016/j.jcis.2016.12.057. PubMed DOI
Chan K.K., Yap S.H.K., Yong K.T. Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano-Micro Lett. 2018;10(4):1–46. doi: 10.1007/s40820-018-0223-3. PubMed DOI PMC
Ludmerczki R., Mura S., Carbonaro C.M., Mandity I.M., Carraro M., Senes N., Garroni S., Granozzi G., Calvillo L., Marras S., Malfatti L. Carbon dots from citric acid and its intermediates formed by thermal decomposition. Chem.--Eur. J. 2019;25(51):11963–11974. doi: 10.1002/chem.201902497. PubMed DOI
Khairol Anuar N.K., Tan H.L., Lim Y.P., So’aib M.S., Abu Bakar N.F. A review on multifunctional carbon-dots synthesized from biomass waste: design/fabrication, characterization and applications. Front. Energy Res. 2021;9:1–22. doi: 10.3389/fenrg.2021.626549. DOI
Zhang M., Zhao X., Fang Z., Niu Y., Lou J., Wu Y., Zou S., Xia S., Sun M., Du F. Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv. 2017;7(6):3369–3375. doi: 10.1039/C6RA26048A. DOI
Liu X., Pang J., Xu F., Zhang X. Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci. Rep. 2016;6(1):1–8. doi: 10.1038/srep31100. PubMed DOI PMC
Karimi M., Avci P., Mobasseri R., Hamblin M.R., Naderi-Manesh H. The novel albumin–chitosan core–shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. J. Nanoparticle Res. 2013;15(5):1–14. doi: 10.1007/s11051-013-1651-0. PubMed DOI PMC
Zhu D., Yan H., Zhou Z., Tang J., Liu X., Hartmann R., Parak W.J., Feliu N., Shen Y. Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater. Sci. 2018;6(7):1800–1817. doi: 10.1039/C8BM00128F. PubMed DOI
Liu C., Zhang P., Zhai X., Tian F., Li W., Yang J., Liu Y., Wang H., Wang W., Liu W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012;33(13):3604–3613. doi: 10.1016/j.biomaterials.2012.01.052. PubMed DOI
Liu J., Li R., Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020;6(12):2179–2195. doi: 10.1021/acscentsci.0c01306. PubMed DOI PMC
Thakur N., Sharma V., Singh T.A., Pabbathi A., Das J. Fabrication of novel carbon dots/cerium oxide nanocomposites for highly sensitive electrochemical detection of doxorubicin. Diam. Relat. Mater. 2022;125:1–12.
Yang X., Wang Y., Shen X., Su C., Yang J., Piao M., Jia F., Gao G., Zhang L., Lin Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J. Colloid Interface Sci. 2017;492:1–7. doi: 10.1016/j.jcis.2016.12.057. PubMed DOI
A Mathew S., Praveena P., Dhanavel S., Manikandan R., Senthilkumar S., Stephen A. Luminescent chitosan/carbon dots as an effective nano-drug carrier for neurodegenerative diseases. RSC Adv. 2020;10(41):24386–24396. doi: 10.1039/D0RA04599C. PubMed DOI PMC
Chandra S., Laha D., Pramanik A., Ray Chowdhuri A., Karmakar P., Sahu S.K. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells. Luminescence. 2016;31(1):81–87. doi: 10.1002/bio.2927. PubMed DOI
Dou Q., Fang X., Jiang S., Chee P.L., Lee T.C., Loh X.J. Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Adv. 2015;5(58):46817–46822. doi: 10.1039/C5RA07968C. DOI
Yu M., Lei B., Gao C., Yan J., Ma P.X. Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Res. 2017;10(1):49–63. doi: 10.1007/s12274-016-1265-9. DOI
Wang J., Liang S., Duan X. Molecular mechanism of miR‐153 inhibiting migration, invasion and epithelial‐mesenchymal transition of breast cancer by regulating transforming growth factor beta (TGF‐β) signaling pathway. J. Cell. Biochem. 2019;120(6):9539–9546. doi: 10.1002/jcb.28230. PubMed DOI
Zuo Z., Ye F., Liu Z., Huang J., Gong Y. MicroRNA-153 inhibits cell proliferation, migration, invasion and epithelial-mesenchymal transition in breast cancer via direct targeting of RUNX2. Exp. Ther. Med. 2019;17(6):4693–4702. doi: 10.3892/etm.2019.7470. PubMed DOI PMC
Shan N., Shen L., Wang J., He D., Duan C. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19. Biochem. Biophys. Res. Commun. 2015;456(1):385–391. doi: 10.1016/j.bbrc.2014.11.093. PubMed DOI
Yuan Y., Du W., Wang Y., Xu C., Wang J., Zhang Y., Wang H., Ju J., Zhao L., Wang Z., Lu Y. Suppression of AKT expression by miR‐153 produced anti‐tumor activity in lung cancer. Int. J. Cancer. 2015;136(6):1333–1340. doi: 10.1002/ijc.29103. PubMed DOI
Thakur S., Saini A.K., Das J., Saini V., Balhara P., Nanda J.S., Saini R.V. miR-153 as biomarker for cancer—functional role as tumor suppressor. Biocell. 2022;46(1):13–26. doi: 10.32604/biocell.2022.016953. DOI