Chitosan-PEI passivated carbon dots for plasmid DNA and miRNA-153 delivery in cancer cells

. 2023 Nov ; 9 (11) : e21824. [epub] 20231107

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38034707
Odkazy

PubMed 38034707
PubMed Central PMC10682126
DOI 10.1016/j.heliyon.2023.e21824
PII: S2405-8440(23)09032-1
Knihovny.cz E-zdroje

These days carbon dots have been developed for multiple biomedical applications. In the current study, the transfection potential of synthesized carbon dots from single biopolymers such as chitosan, PEI-2kDa, and PEI-25kDa (CS-CDs, PEI2-CDs, and PEI25-CDs) and by combining two biopolymers (CP2-CDs and CP25-CDs) through a bottom-up approach have been investigated. The characterization studies revealed successful synthesis of fluorescent, positively charged carbon dots <20 nm in size. Synthesized carbon dots formed a stable complex with plasmid DNA (EGFP-N1) and miRNA-153 that protected DNA/miRNA from serum-induced degradation. In-vitro cytotoxicity analysis revealed minimal cytotoxicity in cancer cell lines (A549 and MDA-MB-231). In-vitro transfection of EGFP-N1 plasmid DNA with PEI2-CDs, PEI25-CDs and CP25-CDs demonstrated that these CDs could strongly transfect A549 and MDA-MB-231 cells. The highest EGFP-N1 plasmid transfection efficiency was observed with PEI2-CDs at a weight ratio of 32:1. PEI25-CDs polyplex showed maximum transfection at a weight ratio of 8:1 in A549 at a weight ratio of 16:1 in MDA-MB-231 cells. CP25-CDs exhibited the highest transfection at a weight ratio of 16:1 in both cell lines. The in-vitro transfection of target miRNA, i.e., miR-153 in A549 and MDA-MB-231 cells with PEI2-CDs, PEI25-CDs, and CP25-CDs suggested successful transfer of miR-153 into cells which induced significant cell death in both cell lines. Importantly, CS-CDs and CP2-CDs could be tolerated by cells up to 200 μg/mL concentration, while PEI2-CDs, PEI25-CDs, and CP25-CDs showed non-cytotoxic behavior at low concentrations (25 μg/mL). Together, these results suggest that a combination of carbon dots synthesized from chitosan and PEI (CP25-CDs) could be a novel vector for transfection nucleic acids that can be utilized in cancer therapy.

Zobrazit více v PubMed

Thakur S., Saini R.V., Singh P., RaizadA P., Thakur V.K., Saini A.K. Nanoparticles as an emerging tool to alter the gene expression: preparation and conjugation methods. Mater. Today Chem. 2020;17:1–16. doi: 10.1016/j.mtchem.2020.100295. DOI

Yuan F., Li S., Fan Z., Meng X., Fan L., Yang S. Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today. 2016;11(5):565–586. doi: 10.1016/j.nantod.2016.08.006. DOI

Mehta V.N., Jha S., Kailasa S.K. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater. Sci. Eng. C. 2014;38:20–27. doi: 10.1016/j.msec.2014.01.038. PubMed DOI

Mehta V.N., Jha S., Singhal R.K., Kailasa S.K. Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J. Chem. 2014;38(12):6152–6160. doi: 10.1039/C4NJ00840E. DOI

Mehta V.N., Jha S., Basu H., Singhal R.K., Kailasa S.K. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensor. Actuator. B Chem. 2015;213:434–443. doi: 10.1016/j.snb.2015.02.104. DOI

Kasibabu B.S., D'souza S.L., Jha S., Singhal R.K., Basu H., Kailasa S.K. One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Anal. Methods. 2015;7(6):2373–2378. doi: 10.1039/C4AY02737J. DOI

Kasibabu B.S., D’souza S.L., Jha S., Kailasa S.K. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice. J. Fluoresc. 2015;25(4):803–810. doi: 10.1007/s10895-015-1595-0. PubMed DOI

Bhamore J.R., Jha S., Singhal R.K., Kailasa S.K. Synthesis of water dispersible fluorescent carbon nanocrystals from Syzygium cumini fruits for the detection of Fe3+ ion in water and biological samples and imaging of Fusarium avenaceum cells. J. Fluoresc. 2017;27(1):125–134. doi: 10.1007/s10895-016-1940-y. PubMed DOI

D'souza S.L., Deshmukh B., Bhamore J.R., Rawat K.A., Lenka N., Kailasa S.K. Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system. RSC Adv. 2016;6(15):12169–12179. doi: 10.1039/C5RA24621K. DOI

D'souza S.L., Deshmukh B., Rawat K.A., Bhamore J.R., Lenka N., Kailasa S.K. Fluorescent carbon dots derived from vancomycin for flutamide drug delivery and cell imaging. New J. Chem. 2016;40(8):7075–7083. doi: 10.1039/C6NJ00358C. DOI

Mehta V.N., S Chettiar S., Bhamore J.R., Kailasa S.K., Patel R.M. Green synthetic approach for synthesis of fluorescent carbon dots for lisinopril drug delivery system and their confirmations in the cells. J. Fluoresc. 2017;27(1):111–124. PubMed

Shen L.M., Liu J. New development in carbon quantum dots technical applications. Talanta. 2016;156:245–256. doi: 10.1016/j.talanta.2016.05.028. PubMed DOI

Zhang J., Yu S.H. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today. 2016;19(7):382–393. doi: 10.1016/j.mattod.2015.11.008. DOI

Wang Q., Zhang C., Shen G., Liu H., Fu H., Cui D. Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J. Nanobiotechnol. 2014;12(1):1–2. doi: 10.1186/s12951-014-0058-0. PubMed DOI PMC

Kim S., Choi Y., Park G., Won C., Park Y.J., Lee Y., Kim B.S., Min D.H. Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res. 2017;10(2):503–519. doi: 10.1007/s12274-016-1309-1. DOI

Yang X., Wang Y., Shen X., Su C., Yang J., Piao M., Jia F., Gao G., Zhang L., Lin Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J. Colloid Interface Sci. 2017;492:1–7. doi: 10.1016/j.jcis.2016.12.057. PubMed DOI

Chan K.K., Yap S.H.K., Yong K.T. Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano-Micro Lett. 2018;10(4):1–46. doi: 10.1007/s40820-018-0223-3. PubMed DOI PMC

Ludmerczki R., Mura S., Carbonaro C.M., Mandity I.M., Carraro M., Senes N., Garroni S., Granozzi G., Calvillo L., Marras S., Malfatti L. Carbon dots from citric acid and its intermediates formed by thermal decomposition. Chem.--Eur. J. 2019;25(51):11963–11974. doi: 10.1002/chem.201902497. PubMed DOI

Khairol Anuar N.K., Tan H.L., Lim Y.P., So’aib M.S., Abu Bakar N.F. A review on multifunctional carbon-dots synthesized from biomass waste: design/fabrication, characterization and applications. Front. Energy Res. 2021;9:1–22. doi: 10.3389/fenrg.2021.626549. DOI

Zhang M., Zhao X., Fang Z., Niu Y., Lou J., Wu Y., Zou S., Xia S., Sun M., Du F. Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv. 2017;7(6):3369–3375. doi: 10.1039/C6RA26048A. DOI

Liu X., Pang J., Xu F., Zhang X. Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci. Rep. 2016;6(1):1–8. doi: 10.1038/srep31100. PubMed DOI PMC

Karimi M., Avci P., Mobasseri R., Hamblin M.R., Naderi-Manesh H. The novel albumin–chitosan core–shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. J. Nanoparticle Res. 2013;15(5):1–14. doi: 10.1007/s11051-013-1651-0. PubMed DOI PMC

Zhu D., Yan H., Zhou Z., Tang J., Liu X., Hartmann R., Parak W.J., Feliu N., Shen Y. Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater. Sci. 2018;6(7):1800–1817. doi: 10.1039/C8BM00128F. PubMed DOI

Liu C., Zhang P., Zhai X., Tian F., Li W., Yang J., Liu Y., Wang H., Wang W., Liu W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012;33(13):3604–3613. doi: 10.1016/j.biomaterials.2012.01.052. PubMed DOI

Liu J., Li R., Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020;6(12):2179–2195. doi: 10.1021/acscentsci.0c01306. PubMed DOI PMC

Thakur N., Sharma V., Singh T.A., Pabbathi A., Das J. Fabrication of novel carbon dots/cerium oxide nanocomposites for highly sensitive electrochemical detection of doxorubicin. Diam. Relat. Mater. 2022;125:1–12.

Yang X., Wang Y., Shen X., Su C., Yang J., Piao M., Jia F., Gao G., Zhang L., Lin Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J. Colloid Interface Sci. 2017;492:1–7. doi: 10.1016/j.jcis.2016.12.057. PubMed DOI

A Mathew S., Praveena P., Dhanavel S., Manikandan R., Senthilkumar S., Stephen A. Luminescent chitosan/carbon dots as an effective nano-drug carrier for neurodegenerative diseases. RSC Adv. 2020;10(41):24386–24396. doi: 10.1039/D0RA04599C. PubMed DOI PMC

Chandra S., Laha D., Pramanik A., Ray Chowdhuri A., Karmakar P., Sahu S.K. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells. Luminescence. 2016;31(1):81–87. doi: 10.1002/bio.2927. PubMed DOI

Dou Q., Fang X., Jiang S., Chee P.L., Lee T.C., Loh X.J. Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Adv. 2015;5(58):46817–46822. doi: 10.1039/C5RA07968C. DOI

Yu M., Lei B., Gao C., Yan J., Ma P.X. Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Res. 2017;10(1):49–63. doi: 10.1007/s12274-016-1265-9. DOI

Wang J., Liang S., Duan X. Molecular mechanism of miR‐153 inhibiting migration, invasion and epithelial‐mesenchymal transition of breast cancer by regulating transforming growth factor beta (TGF‐β) signaling pathway. J. Cell. Biochem. 2019;120(6):9539–9546. doi: 10.1002/jcb.28230. PubMed DOI

Zuo Z., Ye F., Liu Z., Huang J., Gong Y. MicroRNA-153 inhibits cell proliferation, migration, invasion and epithelial-mesenchymal transition in breast cancer via direct targeting of RUNX2. Exp. Ther. Med. 2019;17(6):4693–4702. doi: 10.3892/etm.2019.7470. PubMed DOI PMC

Shan N., Shen L., Wang J., He D., Duan C. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19. Biochem. Biophys. Res. Commun. 2015;456(1):385–391. doi: 10.1016/j.bbrc.2014.11.093. PubMed DOI

Yuan Y., Du W., Wang Y., Xu C., Wang J., Zhang Y., Wang H., Ju J., Zhao L., Wang Z., Lu Y. Suppression of AKT expression by miR‐153 produced anti‐tumor activity in lung cancer. Int. J. Cancer. 2015;136(6):1333–1340. doi: 10.1002/ijc.29103. PubMed DOI

Thakur S., Saini A.K., Das J., Saini V., Balhara P., Nanda J.S., Saini R.V. miR-153 as biomarker for cancer—functional role as tumor suppressor. Biocell. 2022;46(1):13–26. doi: 10.32604/biocell.2022.016953. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...