Fucoidan- and Ciprofloxacin-Doped Plasma-Activated Polymer Coatings on Biodegradable Zinc: Hemocompatibility and Drug Release
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38046307
PubMed Central
PMC10688044
DOI
10.1021/acsomega.3c06048
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Blood-contacting medical devices such as biodegradable metallic bone implant materials are expected to show excellent hemocompatibility both in vitro and in vivo. Different approaches are being studied and used to modify biomaterial surfaces for enhanced biocompatibility and hemocompatibility. However, the composition of degradable biomaterial must address several drawbacks at once. Iron-reinforced zinc material was used as a metallic substrate with improved mechanical properties when compared with those of pure zinc. Poly(lactic) acid (PLA) or polyethylenimine (PEI) was selected as a polymeric matrix for further doping with antibiotic ciprofloxacin (CPR) and marine-sourced polysaccharide fucoidan (FU), which are known for their antibacterial and potential anticoagulant properties, respectively. Radiofrequency air plasma was employed to induce metallic/polymer-coated surface activation before further modification with FU/CPR. Sample surface morphology and composition were studied and evaluated (contact angle measurements, AFM, SEM, and FT-IR) along with the hemolysis ratio and platelet adhesion test. Successful doping of the polymer layer by FU/CRP was confirmed. While PEI induced severe hemolysis over 12%, the PLA-coated samples exhibited even lower hemolysis (∼2%) than uncoated samples while the uncoated samples showed the lowest platelet adhesion. Moreover, gradual antibiotic release from PLA determined by the electrochemical methods using screen-printed carbon electrodes was observed after 24, 48, and 72 h, making the PLA-coated zinc-based material an attractive candidate for biodegradable material design.
Zobrazit více v PubMed
Hudecki A.; Kiryczyński G.; Łos M. J. Biomaterials, Definition, Overview. Stem Cells Biomater. Regener. Med. 2019, ii, 85–98. 10.1016/B978-0-12-812258-7.00007-1. DOI
Ratner B. D.; Bryant S. J. Biomaterials: Where We Have Been and Where We Are Going. Annu. Rev. Biomed. Eng. 2004, 6 (1), 41–75. 10.1146/annurev.bioeng.6.040803.140027. PubMed DOI
Kuhn L. T.Biomaterials. In Introduction to Biomedical Engineering, Second ed.; Elsevier, 2005; pp 255–312.
Thouas G. A.; Chen Q. Metallic Implant Biomaterials. Mater. Sci. Eng., R 2015, 87, 1–57. 10.1016/j.mser.2014.10.001. DOI
Biswal T.; BadJena S. K.; Pradhan D. Sustainable Biomaterials and Their Applications: A Short Review. Mater. Today Proc. 2020, 30, 274–282. 10.1016/j.matpr.2020.01.437. DOI
Radenkovic G.; Petkovic D.. Metallic Biomaterials. In Biomaterials in Clinical Practice; Springer: Cham, 2017; p 183.
Todros S.; Todesco M.; Bagno A. Biomaterials and Their Biomedical Applications: From Replacement to Regeneration. Processes 2021, 9 (11), 1949.10.3390/pr9111949. DOI
Yun Y.; Dong Z.; Lee N.; Liu Y.; Xue D.; Guo X.; Kuhlmann J.; Doepke A.; Halsall H. B.; Heineman W.; et al. Revolutionizing Biodegradable Metals. Mater. Today 2009, 12 (10), 22–32. 10.1016/S1369-7021(09)70273-1. DOI
Li H.; Zheng Y.; Qin L. Progress of Biodegradable Metals. Prog. Nat. Sci. Mater. Int. 2014, 24 (5), 414–422. 10.1016/j.pnsc.2014.08.014. DOI
Wei S.; Ma J. X.; Xu L.; Gu X. S.; Ma X. L. Biodegradable Materials for Bone Defect Repair. Mil. Med. Res. 2020, 7 (1), 5410.1186/s40779-020-00280-6. PubMed DOI PMC
Godavitarne C.; Robertson A.; Peters J.; Rogers B. Biodegradable Materials. Orthop. Trauma 2017, 31 (5), 316–320. 10.1016/j.mporth.2017.07.011. DOI
Yang Y.; He C.; Dianyu E.; Yang W.; Qi F.; Xie D.; Shen L.; Peng S.; Shuai C. Mg Bone Implant: Features, Developments and Perspectives. Mater. Des. 2020, 185, 10825910.1016/j.matdes.2019.108259. DOI
Yusop A. H.; Bakir A. A.; Shaharom N. A.; Abdul Kadir M. R.; Hermawan H. Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review. Int. J. Biomater. 2012, 2012, 1–10. 10.1155/2012/641430. PubMed DOI PMC
Hermawan H. Updates on the Research and Development of Absorbable Metals for Biomedical Applications. Prog. Biomater. 2018, 7, 93–110. 10.1007/s40204-018-0091-4. PubMed DOI PMC
Pospíšilová I.; Vojtěch D. Zinc Alloys for Biodegradable Medical Implants. Mater. Sci. Forum 2014, 782 (April 2014), 457–460. 10.4028/www.scientific.net/MSF.782.457. DOI
Zhang J.; Shang Z.; Jiang Y.; Zhang K.; Li X.; Ma M.; Li Y.; Ma B. Biodegradable Metals for Bone Fracture Repair in Animal Models: A Systematic Review. Regener. Biomater. 2021, 8 (1), rbaa04710.1093/rb/rbaa047. PubMed DOI PMC
Shishir R.; Lokeshkumar E.; Manojkumar P.; Nasiruddin U.; Premchand C.; Ponnilavan V.; Rama Krishna L.; R N. Development of Biocompatible and Corrosion-Resistant Plasma Electrolytic Oxidation Coating over Zinc for Orthopedic Implant Applications. Surf. Coat. Technol. 2022, 450, 12899010.1016/j.surfcoat.2022.128990. DOI
Levy G. K.; Goldman J.; Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—a Review Paper. Metals 2017, 7 (10), 40210.3390/met7100402. DOI
Mulinti P.; Brooks J. E.; Lervick B.; Pullan J. E.; Brooks A. E.. Strategies to Improve the Hemocompatibility of Biodegradable Biomaterials. In Hemocompatibility of Biomaterials for Clinical Applications: Blood-Biomaterials Interactions; Elsevier Ltd, 2018; pp 253–278.
Bagha P. S.; Khakbiz M.; Sheibani S.; Ebrahimi-Barough S.; Hermawan H. In Vitro Degradation, Hemocompatibility, and Cytocompatibility of Nanostructured Absorbable Fe-Mn-Ag Alloys for Biomedical Application. ACS Biomater. Sci. Eng. 2020, 6 (4), 2094–2106. 10.1021/acsbiomaterials.0c00263. PubMed DOI
Yin Y. X.; Zhou C.; Shi Y. P.; Shi Z. Z.; Lu T. H.; Hao Y.; Liu C. H.; Wang X.; Zhang H. J.; Wang L. N. Hemocompatibility of Biodegradable Zn-0.8 wt% (Cu, Mn, Li) Alloys. Mater. Sci. Eng., C 2019, 104, 10989610.1016/j.msec.2019.109896. PubMed DOI
Nie F. L.; Zheng Y. F.; Wei S. C.; Hu C.; Yang G. In Vitro Corrosion, Cytotoxicity and Hemocompatibility of Bulk Nanocrystalline Pure Iron. Biomed. Mater. 2010, 5 (6), 06501510.1088/1748-6041/5/6/065015. PubMed DOI
Králová Z. O.; Gorejová R.; Oriňaková R.; Petráková M.; Oriňak A.; Kupková M.; Hrubovčáková M.; Sopčák T.; Baláž M.; Maskaľová I.; et al. Biodegradable Zinc-Iron Alloys: Complex Study of Corrosion Behavior, Mechanical Properties and Hemocompatibility. Prog. Nat. Sci. Mater. Int. 2021, 31 (2), 279–287. 10.1016/j.pnsc.2021.01.002. DOI
Shen C.; Liu X.; Fan B.; Lan P.; Zhou F.; Li X.; Wang H.; Xiao X.; Li L.; Zhao S.; et al. Mechanical Properties,: In Vitro Degradation Behavior, Hemocompatibility and Cytotoxicity Evaluation of Zn-1.2Mg Alloy for Biodegradable Implants. RSC Adv. 2016, 6 (89), 86410–86419. 10.1039/C6RA14300H. DOI
Cheng J.; Huang T.; Zheng Y. F. Microstructure, Mechanical Property, Biodegradation Behavior, and Biocompatibility of Biodegradable Fe-Fe2O3 Composites. J. Biomed. Mater. Res., Part A 2014, 102, 2277.10.1002/jbm.a.34882. PubMed DOI
Luo R.; Tang L.; Zhong S.; Yang Z.; Wang J.; Weng Y.; Tu Q.; Jiang C.; Huang N. In Vitro Investigation of Enhanced Hemocompatibility and Endothelial Cell Proliferation Associated with Quinone-Rich Polydopamine Coating. ACS Appl. Mater. Interfaces 2013, 5 (5), 1704–1714. 10.1021/am3027635. PubMed DOI
Gao Q.; Li X.; Yu W.; Jia F.; Yao T.; Jin Q.; Ji J. Fabrication of Mixed-Charge Polypeptide Coating for Enhanced Hemocompatibility and Anti-Infective Effect. ACS Appl. Mater. Interfaces 2020, 12 (2), 2999–3010. 10.1021/acsami.9b19335. PubMed DOI
Johnbosco C.; Zschoche S.; Nitschke M.; Hahn D.; Werner C.; Maitz M. F. Bioresponsive StarPEG-Heparin Hydrogel Coatings on Vascular Stents for Enhanced Hemocompatibility. Mater. Sci. Eng., C 2021, 128, 11226810.1016/j.msec.2021.112268. PubMed DOI
Li J.; Zhang K.; Ma W.; Wu F.; Yang P.; He Z.; Huang N. Investigation of Enhanced Hemocompatibility and Tissue Compatibility Associated with Multi-Functional Coating Based on Hyaluronic Acid and Type IV Collagen. Regener. Biomater. 2016, 3 (3), 149–157. 10.1093/rb/rbv030. PubMed DOI PMC
Li P.; Li L.; Wang W.; Jin W.; Liu X.; Yeung K. W. K.; Chu P. K. Enhanced Corrosion Resistance and Hemocompatibility of Biomedical NiTi Alloy by Atmospheric-Pressure Plasma Polymerized Fluorine-Rich Coating. Appl. Surf. Sci. 2014, 297, 109–115. 10.1016/j.apsusc.2014.01.092. DOI
Shi Z. Z.; Gao X. X.; Zhang H. J.; Liu X. F.; Li H. Y.; Zhou C.; Yin Y. X.; Wang L. N. Design Biodegradable Zn Alloys: Second Phases and Their Significant Influences on Alloy Properties. Bioact. Mater. 2020, 5 (2), 210–218. 10.1016/j.bioactmat.2020.02.010. PubMed DOI PMC
Liu X.; Sun J.; Zhou F.; Yang Y.; Chang R.; Qiu K.; Pu Z.; Li L.; Zheng Y. Micro-Alloying with Mn in Zn–Mg Alloy for Future Biodegradable Metals Application. Mater. Des. 2016, 94, 95–104. 10.1016/j.matdes.2015.12.128. DOI
Ali M.; Elsherif M.; Salih A. E.; Ul-Hamid A.; Hussein M. A.; Park S.; Yetisen A. K.; Butt H. Surface Modification and Cytotoxicity of Mg-Based Bio-Alloys: An Overview of Recent Advances. J. Alloys Compd. 2020, 825, 15414010.1016/j.jallcom.2020.154140. DOI
Smith J. R.; Lamprou D. A. Polymer Coatings for Biomedical Applications: A Review. Trans. Inst. Met. Finish. 2014, 92 (1), 9–19. 10.1179/0020296713Z.000000000157. DOI
Zhu Y.; Liu W.; Ngai T. Polymer Coatings on Magnesium-Based Implants for Orthopedic Applications. J. Polym. Sci. 2022, 60 (1), 32–51. 10.1002/pol.20210578. DOI
Szaraniec B.; Pielichowska K.; Pac E.; Menaszek E. Multifunctional Polymer Coatings for Titanium Implants. Mater. Sci. Eng., C 2018, 93, 950–957. 10.1016/j.msec.2018.08.065. PubMed DOI
Li L. Y.; Cui L. Y.; Zeng R. C.; Li S. Q.; Chen X. B.; Zheng Y.; Kannan M. B. Advances in Functionalized Polymer Coatings on Biodegradable Magnesium Alloys – A Review. Acta Biomater. 2018, 79, 23–36. 10.1016/j.actbio.2018.08.030. PubMed DOI
Priyadarshini B.; Chetan M. R.; Vijayalakshmi U. Bioactive Coating as a Surface Modification Technique for Biocompatible Metallic Implants: A Review. J. Asian Ceram. Soc. 2019, 7 (4), 397–406. 10.1080/21870764.2019.1669861. DOI
Zeng R. C.; Cui L. Y.; Jiang K.; Liu R.; Zhao B. D.; Zheng Y. F. In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(l -Lactic Acid) Composite Coating on Mg-1Li-1Ca Alloy for Orthopedic Implants. ACS Appl. Mater. Interfaces 2016, 8 (15), 10014–10028. 10.1021/acsami.6b00527. PubMed DOI
Bakhsheshi-Rad H. R.; Akbari M.; Ismail A. F.; Aziz M.; Hadisi Z.; Pagan E.; Daroonparvar M.; Chen X. Coating Biodegradable Magnesium Alloys with Electrospun Poly-L-Lactic Acid-Åkermanite-Doxycycline Nanofibers for Enhanced Biocompatibility, Antibacterial Activity, and Corrosion Resistance. Surf. Coat. Technol. 2019, 377, 12489810.1016/j.surfcoat.2019.124898. DOI
Santoro M.; Shah S. R.; Walker J. L.; Mikos A. G. Poly(Lactic Acid) Nanofibrous Scaffolds for Tissue Engineering. Adv. Drug Delivery Rev. 2016, 107, 206–212. 10.1016/j.addr.2016.04.019. PubMed DOI PMC
Yao X.; Zhou N.; Wan L.; Su X.; Sun Z.; Mizuguchi H.; Yoshioka Y.; Nakagawa S.; Zhao R. C.; Gao J. Q. Polyethyleneimine-Coating Enhances Adenoviral Transduction of Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2014, 447 (3), 383–387. 10.1016/j.bbrc.2014.03.142. PubMed DOI
Xia T.; Kovochich M.; Liong M.; Meng H.; Kabehie S.; George S.; Zink J. I.; Nel A. E. Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of SiRNA and DNA Constructs. ACS Nano 2009, 3 (10), 3273–3286. 10.1021/nn900918w. PubMed DOI PMC
Thomas T. J.; Tajmir-Riahi H. A.; Pillai C. K. S. Biodegradable Polymers for Gene Delivery. Molecules 2019, 24 (20), 3744.10.3390/molecules24203744. PubMed DOI PMC
Bastarrachea L. J.; Goddard J. M. Self-Healing Antimicrobial Polymer Coating with Efficacy in the Presence of Organic Matter. Appl. Surf. Sci. 2016, 378, 479–488. 10.1016/j.apsusc.2016.03.198. DOI
Gorejová R.; Oriňaková R.; Macko J.; Oriňak A.; Kupková M.; Hrubovčáková M.; Džupon M.; Sopčák T.; Ševc J.; Maskaľová I.; Džunda R. Electrochemical Behavior, Biocompatibility and Mechanical Performance of Biodegradable Iron with PEI Coating. J. Biomed. Mater. Res., Part A 2022, 110 (3), 659–671. 10.1002/jbm.a.37318. PubMed DOI
Pritchard E. M.; Valentin T.; Panilaitis B.; Omenetto F.; Kaplan D. L. Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment. Adv. Funct. Mater. 2013, 23 (7), 854–861. 10.1002/adfm.201201636. PubMed DOI PMC
Ahmed W.; Zhai Z.; Gao C.. Adaptive Antibacterial Biomaterial Surfaces and Their Applications. In Materials Today Bio.; Elsevier B.V., March 1, 2019. PubMed PMC
Gottenbos B.; Busscher H. J.; Van Der Mei H. C.; Nieuwenhuis P. Pathogenesis and Prevention of Biomaterial Centered Infections. J. Mater. Sci. Mater. Med. 2002, 13, 717–722. 10.1023/A:1016175502756. PubMed DOI
Mishra N.; Jain P. A Comprehensive Review on Transdermal Patch of Ciprofloxacin Hydrochloride. Int. J. Adv. Pharm. Med. Bioallied Sci. 2022, 10 (2), 82–87. 10.5281/zenodo.7047439. DOI
Esrafilzadeh D.; Razal J. M.; Moulton S. E.; Stewart E. M.; Wallace G. G. Multifunctional Conducting Fibres with Electrically Controlled Release of Ciprofloxacin. J. Controlled Release 2013, 169 (3), 313–320. 10.1016/j.jconrel.2013.01.022. PubMed DOI
Kyzioł A.; Michna J.; Moreno I.; Gamez E.; Irusta S. Preparation and Characterization of Electrospun Alginate Nanofibers Loaded with Ciprofloxacin Hydrochloride. Eur. Polym. J. 2017, 96, 350–360. 10.1016/j.eurpolymj.2017.09.020. DOI
Krukiewicz K.; Gniazdowska B.; Jarosz T.; Herman A. P.; Boncel S.; Turczyn R. Effect of Immobilization and Release of Ciprofloxacin and Quercetin on Electrochemical Properties of Poly(3,4-Ethylenedioxypyrrole) Matrix. Synth. Met. 2019, 249, 52–62. 10.1016/j.synthmet.2019.02.001. DOI
Irhimeh M. R.; Fitton J. H.; Lowenthal R. M. Pilot Clinical Study to Evaluate the Anticoagulant Activity of Fucoidan. Blood Coagulation Fibrinolysis 2009, 20 (7), 607–610. 10.1097/MBC.0b013e32833135fe. PubMed DOI
Cumashi A.; Ushakova N. A.; Preobrazhenskaya M. E.; D’Incecco A.; Piccoli A.; Totani L.; Tinari N.; Morozevich G. E.; Berman A. E.; Bilan M. I.; et al. A Comparative Study of the Anti-Inflammatory, Anticoagulant, Antiangiogenic, and Antiadhesive Activities of Nine Different Fucoidans from Brown Seaweeds. Glycobiology 2007, 17 (5), 541–552. 10.1093/glycob/cwm014. PubMed DOI
Husni A.; Izmi N.; Ayunani F. Z.; Kartini A.; Husnayain N.; Isnansetyo A. Characteristics and Antioxidant Activity of Fucoidan from Sargassum Hystrix: Effect of Extraction Method. Int. J. Food Sci. 2022, 2022, 368972410.1155/2022/3689724. PubMed DOI PMC
Yuan Y.; Hays M. P.; Hardwidge P. R.; Kim J. Surface Characteristics Influencing Bacterial Adhesion to Polymeric Substrates. RSC Adv. 2017, 7 (23), 14254–14261. 10.1039/C7RA01571B. DOI
Al-Azzam N.; Alazzam A. Micropatterning of Cells via Adjusting Surface Wettability Using Plasma Treatment and Graphene Oxide Deposition. PLoS One 2022, 17 (6), e026991410.1371/journal.pone.0269914. PubMed DOI PMC
Yusop A. H. M.; Daud N. M.; Nur H.; Kadir M. R. A.; Hermawan H.; Hakim A.; Yusop M.; Daud N. M.; Nur H.; Rafiq M.; et al. Controlling the Degradation Kinetics of Porous Iron by Poly(Lactic-Co-Glycolic Acid) Infiltration for Use as Temporary Medical Implants. Sci. Rep. 2015, 5, 1119410.1038/srep11194. PubMed DOI PMC
Dixon D. T.; Gomillion C. T. 3D-Printed Conductive Polymeric Scaffolds with Direct Current Electrical Stimulation for Enhanced Bone Regeneration. J. Biomed. Mater. Res., Part B 2023, 111, 1351–1364. 10.1002/jbm.b.35239. PubMed DOI
Ira Y. M.; Krishnamoorthy G. DNA Vector Polyethyleneimine Affects Cell PH and Membrane Potential: A Time-Resolved Fluorescence Microscopy Study. J. Fluoresc. 2003, 13 (4), 339–347.
Zhong D.; Jiao Y.; Zhang Y.; Zhang W.; Li N.; Zuo Q.; Wang Q.; Xue W.; Liu Z. Effects of the Gene Carrier Polyethyleneimines on Structure and Function of Blood Components. Biomaterials 2013, 34 (1), 294–305. 10.1016/j.biomaterials.2012.09.060. PubMed DOI
Libi S.; Calenic B.; Astete C. E.; Kumar C.; Sabliov C. M. Investigation on Hemolytic Effect of Poly(Lactic Co-Glycolic) Acid Nanoparticles Synthesized Using Continuous Flow and Batch Processes. Nanotechnol. Rev. 2017, 6 (2), 209–220. 10.1515/ntrev-2016-0045. DOI
Diirig’ J.; Bruhn2 T.; Zurbornl K.-H.; Gutensohn3 K.; Bruhn’ H. D.; Béress L.; Durig J. Anticoagulant fucoidan fractions from Fucus vesiculosus induce platelet activation in vitro. Thromb Res. 1997, 85 (6), 479–491. 10.1016/s0049-3848(97)00037-6. PubMed DOI
Imre S.; Dogaru M. T.; Vari C. E.; Muntean T.; Kelemen L. Validation of an HPLC Method for the Determination of Ciprofloxacin in Human Plasma. J. Pharm. Biomed. Anal. 2003, 33 (1), 125–130. 10.1016/S0731-7085(03)00151-1. PubMed DOI
Vybíralová Z.; Nobilis M.; Zoulova J.; Květina J.; Petr P. High-Performance Liquid Chromatographic Determination of Ciprofloxacin in Plasma Samples. J. Pharm. Biomed. Anal. 2005, 37, 851–858. 10.1016/j.jpba.2004.09.034. PubMed DOI
Vella J.; Busuttil F.; Bartolo N. S.; Sammut C.; Ferrito V.; Serracino-Inglott A.; Azzopardi L. M.; LaFerla G. A Simple HPLC-UV Method for the Determination of Ciprofloxacin in Human Plasma. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2015, 989, 80–85. 10.1016/j.jchromb.2015.01.006. PubMed DOI
Fratini L.; Schapoval E. S. Ciprofloxacin Determination by Visible Light Spectrophotometry Using Iron(III)Nitrate. Int. J. Pharm. 1996, 127 (2), 279–282. 10.1016/0378-5173(95)04290-3. DOI
Torriero A. A. J.; Ruiz-Díaz J. J. J.; Salinas E.; Marchevsky E. J.; Sanz M. I.; Raba J. Enzymatic Rotating Biosensor for Ciprofloxacin Determination. Talanta 2006, 69 (3), 691–699. 10.1016/j.talanta.2005.11.005. PubMed DOI
Cinková K.; Andrejčáková D.; Švorc L’. Electrochemical Method for Point-of-Care Determination of Ciprofloxacin Using Boron-Doped Diamond Electrode. Acta Chim. Slovaca 2016, 9 (2), 146–151. 10.1515/acs-2016-0025. DOI