Competitive Specific Anchorage of Molecules onto Surfaces: Quantitative Control of Grafting Densities and Contamination by Free Anchors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38049433
PubMed Central
PMC10734310
DOI
10.1021/acs.langmuir.3c02567
Knihovny.cz E-zdroje
- MeSH
- biopolymery MeSH
- biotin * chemie MeSH
- buněčná membrána MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biopolymery MeSH
- biotin * MeSH
The formation of surfaces decorated with biomacromolecules such as proteins, glycans, or nucleic acids with well-controlled orientations and densities is of critical importance for the design of in vitro models, e.g., synthetic cell membranes and interaction assays. To this effect, ligand molecules are often functionalized with an anchor that specifically binds to a surface with a high density of binding sites, providing control over the presentation of the molecules. Here, we present a method to robustly and quantitatively control the surface density of one or several types of anchor-bearing molecules by tuning the relative concentrations of target molecules and free anchors in the incubation solution. We provide a theoretical background that relates incubation concentrations to the final surface density of the molecules of interest and present effective guidelines toward optimizing incubation conditions for the quantitative control of surface densities. Focusing on the biotin anchor, a commonly used anchor for interaction studies, as a salient example, we experimentally demonstrate surface density control over a wide range of densities and target molecule sizes. Conversely, we show how the method can be adapted to quality control the purity of end-grafted biopolymers such as biotinylated glycosaminoglycans by quantifying the amount of residual free biotin reactant in the sample solution.
Département de Chimie Moléculaire Université Grenoble Alpes CNRS 38000 Grenoble France
School of Biomedical Sciences Faculty of Biological Sciences University of Leeds Leeds LS2 9JT U K
Zobrazit více v PubMed
Bar L.; Dejeu J.; Lartia R.; Bano F.; Richter R. P.; Coche-Guerente L.; Boturyn D. Impact of antigen density on recognition by monoclonal antibodies. Anal. Chem. 2020, 92 (7), 5396–5403. 10.1021/acs.analchem.0c00092. PubMed DOI
Di Iorio D.; Huskens J. Surface modification with control over ligand density for the study of multivalent biological systems. ChemistryOpen 2020, 9 (1), 53–66. 10.1002/open.201900290. PubMed DOI PMC
Houseman B. T.; Mrksich M. The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion. Biomaterials 2001, 22 (9), 943–955. 10.1016/S0142-9612(00)00259-3. PubMed DOI
Deeg J. A.; Louban I.; Aydin D.; Selhuber-Unkel C.; Kessler H.; Spatz J. P. Impact of local versus global ligand density on cellular adhesion. Nano Lett. 2011, 11 (4), 1469–1476. 10.1021/nl104079r. PubMed DOI PMC
Koepsel J. T.; Loveland S. G.; Schwartz M. P.; Zorn S.; Belair D. G.; Le N. N.; Murphy W. L. A chemically-defined screening platform reveals behavioral similarities between primary human mesenchymal stem cells and endothelial cells. Integr. Biol. 2012, 4 (12), 1508–1521. 10.1039/c2ib20029e. PubMed DOI PMC
Ho S. S.; Keown A. T.; Addison B.; Leach J. K. Cell migration and bone formation from mesenchymal stem cell spheroids in alginate hydrogels are regulated by adhesive ligand density. Biomacromolecules 2017, 18 (12), 4331–4340. 10.1021/acs.biomac.7b01366. PubMed DOI PMC
Martinez-Veracoechea F. J.; Frenkel D. Designing super selectivity in multivalent nano-particle binding. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (27), 10963–10968. 10.1073/pnas.1105351108. PubMed DOI PMC
Dubacheva G. V.; Curk T.; Richter R. P. Determinants of superselectivity - Practical concepts for application in biology and medicine. Acc. Chem. Res. 2023, 56 (7), 729–739. 10.1021/acs.accounts.2c00672. PubMed DOI PMC
Frasconi M.; Mazzei F.; Ferri T. Protein immobilization at gold-thiol surfaces and potential for biosensing. Anal. Bioanal. Chem. 2010, 398 (4), 1545–1564. 10.1007/s00216-010-3708-6. PubMed DOI
Dubacheva G. V.; Curk T.; Auzely-Velty R.; Frenkel D.; Richter R. P. Designing multivalent probes for tunable superselective targeting. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (18), 5579–5584. 10.1073/pnas.1500622112. PubMed DOI PMC
Tinazli A.; Tang J.; Valiokas R.; Picuric S.; Lata S.; Piehler J.; Liedberg B.; Tampé R. High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: A generic platform for protein chip technologies. Chem.—Eur. J. 2005, 11, 5249–5259. 10.1002/chem.200500154. PubMed DOI
Kocer G.; Jonkheijm P. Guiding hMSC adhesion and differentiation on supported lipid bilayers. Adv. Healthcare Mater. 2017, 6 (3), 1600862.10.1002/adhm.201600862. PubMed DOI
Thid D.; Holm K.; Eriksson P. S.; Ekeroth J.; Kasemo B.; Gold J. Supported phospholipid bilayers as a platform for neural progenitor cell culture. J. Biomed. Mater. Res., Part A 2008, 84A (4), 940–953. 10.1002/jbm.a.31358. PubMed DOI
Zahn R.; Osmanović D.; Ehret S.; Araya Callis C.; Frey S.; Stewart M.; You C.; Gorlich D.; Hoogenboom B. W.; Richter R. P. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies. eLife 2016, 5, e1411910.7554/elife.14119. PubMed DOI PMC
Sobrinos-Sanguino M.; Velez M.; Richter R. P.; Rivas G. Reversible Membrane Tethering by ZipA Determines FtsZ Polymerization in Two and Three Dimensions. Biochemistry 2019, 58 (38), 4003–4015. 10.1021/acs.biochem.9b00378. PubMed DOI
Zhu X. Y.; Holtz B.; Wang Y.; Wang L. X.; Orndorff P. E.; Guo A. Quantitative glycomics from fluidic glycan microarrays. J. Am. Chem. Soc. 2009, 131 (38), 13646–13650. 10.1021/ja902783n. PubMed DOI PMC
Zhi Z. L.; Laurent N.; Powell A. K.; Karamanska R.; Fais M.; Voglmeir J.; Wright A.; Blackburn J. M.; Crocker P. R.; Russell D. A.; Flitsch S.; Field R. A.; Turnbull J. E. A versatile gold surface approach for fabrication and interrogation of glycoarrays. ChemBioChem 2008, 9 (10), 1568–1575. 10.1002/cbic.200700788. PubMed DOI
Dubacheva G. V.; Galibert M.; Coche-Guerente L.; Dumy P.; Boturyn D.; Labbe P. Redox strategy for reversible attachment of biomolecules using bifunctional linkers. Chem. Commun. 2011, 47 (12), 3565–3567. 10.1039/c0cc05647b. PubMed DOI
Wayment J. R.; Harris J. M. Controlling binding site densities on glass surfaces. Anal. Chem. 2006, 78 (22), 7841–7849. 10.1021/ac061392g. PubMed DOI
Almeida-Marrero V.; Bethlehem F.; Longo S.; Bertolino M. C.; Torres T.; Huskens J.; de la Escosura A. Tailored multivalent targeting of siglecs with photosensitizing liposome nanocarriers. Angew. Chem., Int. Ed. 2022, 61 (31), e20220690010.1002/anie.202206900. PubMed DOI PMC
Di Iorio D.; Verheijden M. L.; van der Vries E.; Jonkheijm P.; Huskens J. Weak multivalent binding of influenza hemagglutinin nanoparticles at a sialoglycan-functionalized supported lipid bilayer. ACS Nano 2019, 13 (3), 3413–3423. 10.1021/acsnano.8b09410. PubMed DOI PMC
Richter R. P.; Bérat R.; Brisson A. R. Formation of Solid-Supported Lipid Bilayers: An Integrated View. Langmuir 2006, 22 (8), 3497–3505. 10.1021/la052687c. PubMed DOI
Barth K. A.; Coullerez G.; Nilsson L. M.; Castelli R.; Seeberger P. H.; Vogel V.; Textor M. An engineered mannoside presenting platform: Escherichia coli adhesion under static and dynamic conditions. Adv. Funct. Mater. 2008, 18, 1459–1469. 10.1002/adfm.200701246. DOI
Dalier F.; Eghiaian F.; Scheuring S.; Marie E.; Tribet C. Temperature-switchable control of ligand display on adlayers of mixed poly(lysine)-g-(PEO) and poly(lysine)-g-(ligand-modified poly-N-isopropylacrylamide). Biomacromolecules 2016, 17 (5), 1727–1736. 10.1021/acs.biomac.6b00136. PubMed DOI
Huang N.-P.; Vörös J.; De Paul S. M.; Textor M.; Spencer N. D. Biotin-derivatized poly(l-lysine)-g-poly(ethylene glycol): A novel polymeric interface for bioaffinity sensing. Langmuir 2002, 18 (1), 220–230. 10.1021/la010913m. DOI
Thid D.; Bally M.; Holm K.; Chessari S.; Tosatti S.; Textor M.; Gold J. Issues of ligand accessibility and mobility in initial cell attachment. Langmuir 2007, 23 (23), 11693–11704. 10.1021/la701159u. PubMed DOI
Dubacheva G. V.; Araya-Callis C.; Geert Volbeda A.; Fairhead M.; Codee J.; Howarth M.; Richter R. P. Controlling multivalent binding through surface chemistry: Model study on streptavidin. J. Am. Chem. Soc. 2017, 139 (11), 4157–4167. 10.1021/jacs.7b00540. PubMed DOI PMC
Migliorini E.; Thakar D.; Sadir R.; Pleiner T.; Baleux F.; Lortat-Jacob H.; Coche-Guerente L.; Richter R. P. Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels. Biomaterials 2014, 35 (32), 8903–8915. 10.1016/j.biomaterials.2014.07.017. PubMed DOI
Wilchek M.; Bayer E.. Methods in Enzymology: Avidin-Biotin Technology; Academic Press, 1990. PubMed
Kay B. K.; Thai S.; Volgina V. V. High-throughput biotinylation of proteins. Methods Mol. Biol. 2009, 498, 185–198. 10.1007/978-1-59745-196-3_13. PubMed DOI PMC
Chattopadhaya S.; Tan L. P.; Yao S. Q. Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays. Nat. Protoc. 2006, 1 (5), 2386–2398. 10.1038/nprot.2006.338. PubMed DOI
Hamming P. H. E.; Huskens J. Streptavidin coverage on biotinylated surfaces. ACS Appl. Mater. Interfaces 2021, 13 (48), 58114–58123. 10.1021/acsami.1c16446. PubMed DOI PMC
Nye J. A.; Groves J. T. Kinetic control of histidine-tagged protein surface density on supported lipid bilayers. Langmuir 2008, 24 (8), 4145–4149. 10.1021/la703788h. PubMed DOI
Bouzas-Ramos D.; Trapiella-Alfonso L.; Pons K.; Encinar J. R.; Costa-Fernandez J. M.; Tsatsaris V.; Gagey-Eilstein N. Controlling ligand surface density on streptavidin-magnetic particles by a simple, rapid, and reliable chemiluminescent test. Bioconjugate Chem. 2018, 29 (8), 2646–2653. 10.1021/acs.bioconjchem.8b00347. PubMed DOI
Davies H. S.; Baranova N. S.; El Amri N.; Coche-Guerente L.; Verdier C.; Bureau L.; Richter R. P.; Debarre D. An integrated assay to probe endothelial glycocalyx-blood cell interactions under flow in mechanically and biochemically well-defined environments. Matrix Biol. 2019, 78–79, 47–59. 10.1016/j.matbio.2018.12.002. PubMed DOI
Xu F.; Zhen G.; Yu F.; Kuennemann E.; Textor M.; Knoll W. Combined affinity and catalytic biosensor: in situ enzymatic activity monitoring of surface-bound enzymes. J. Am. Chem. Soc. 2005, 127 (38), 13084–13085. 10.1021/ja050818q. PubMed DOI
Hermens W. T.; Beneš M.; Richter R. P.; Speijer H. Effects of flow on solute exchange between fluids and supported biosurfaces. Biotechnol. Appl. Biochem. 2004, 39 (3), 277–284. 10.1042/BA20030113. PubMed DOI
Dorgan L.; Magnotti R.; Hou J.; Engle T.; Ruley K.; Shull B. Methods to determine biotin-binding capacity of streptavidin-coated magnetic particles. J. Magn. Magn. Mater. 1999, 194, 69–75. 10.1016/S0304-8853(98)00563-0. DOI
Di Iorio D.Designer surfaces for the quantification of multivalent biological interactions. Ph.D. Thesis, University of Twente, Netherlands, 2019.
Lata S.; Gavutis M.; Piehler J. Monitoring the dynamics of ligand-receptor complexes on model membranes. J. Am. Chem. Soc. 2006, 128 (1), 6–7. 10.1021/ja054700l. PubMed DOI
Lata S.; Piehler J. Stable and functional immobilization of histidine-tagged proteins via multivalent chelator headgroups on a molecular poly(ethylene glycol) brush. Anal. Chem. 2005, 77 (4), 1096–1105. 10.1021/ac048813j. PubMed DOI
Ananth A.; Genua M.; Aissaoui N.; Diaz L.; Eisele N. B.; Frey S.; Dekker C.; Richter R. P.; Gorlich D. Reversible immobilization of proteins in sensors and solid-state nanopores. Small 2018, 14 (18), e170335710.1002/smll.201703357. PubMed DOI
Richter R. P.; Mukhopadhyay A.; Brisson A. Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys. J. 2003, 85 (5), 3035–3047. 10.1016/S0006-3495(03)74722-5. PubMed DOI PMC
Zhao H.; Brown P. H.; Schuck P. On the distribution of protein refractive index increments. Biophys. J. 2011, 100 (9), 2309–2317. 10.1016/j.bpj.2011.03.004. PubMed DOI PMC
Richter R. P.; Brisson A. QCM-D on mica for parallel QCM-D - AFM studies. Langmuir 2004, 20 (11), 4609–4613. 10.1021/la049827n. PubMed DOI
Reviakine I.; Johannsmann D.; Richter R. P. Hearing what you cannot see and visualizing what you hear: interpreting quartz crystal microbalance data from solvated interfaces. Anal. Chem. 2011, 83, 8838–8848. 10.1021/ac201778h. PubMed DOI
Carton I.; Brisson A. R.; Richter R. P. Label-free detection of clustering of membrane-bound proteins. Anal. Chem. 2010, 82 (22), 9275–9281. 10.1021/ac102495q. PubMed DOI
Richter R. P.; Rodenhausen K. B.; Eisele N. B.; Schubert M.. Coupling spectroscopic ellipsometry and quartz crystal microbalance to study organic films at the solid-liquid interface. In Ellipsometry of Functional Organic Surfaces and Films; Hinrichs K., Eichhorn K.-J., Eds.; Springer: Heidelberg, 2013.
Thakar D.; Migliorini E.; Coche-Guerente L.; Sadir R.; Lortat-Jacob H.; Boturyn D.; Renaudet O.; Labbe P.; Richter R. P. A quartz crystal microbalance method to study the terminal functionalization of glycosaminoglycans. Chem. Commun. 2014, 50 (96), 15148–15151. 10.1039/C4CC06905F. PubMed DOI
Srimasorn S.; Souter L.; Green D. E.; Djerbal L.; Goodenough A.; Duncan J. A.; Roberts A. R. E.; Zhang X.; Debarre D.; DeAngelis P. L.; Kwok J. C. F.; Richter R. P. A quartz crystal microbalance method to quantify the size of hyaluronan and other glycosaminoglycans on surfaces. Sci. Rep. 2022, 12 (1), 10980.10.1038/s41598-022-14948-7. PubMed DOI PMC
Chen C.; Huang Q. L.; Jiang S. H.; Pan X.; Hua Z. C. Immobilized protein ZZ, an affinity tool for immunoglobulin isolation and immunological experimentation. Biotechnol. Appl. Biochem. 2006, 45 (2), 87–92. 10.1042/ba20060055. PubMed DOI
Bingen P.; Wang G.; Steinmetz N. F.; Rodahl M.; Richter R. P. Solvation Effects in the Quartz Crystal Microbalance with Dissipation Monitoring Response to Biomolecular Adsorption. A Phenomenological Approach. Anal. Chem. 2008, 80 (23), 8880–8890. 10.1021/ac8011686. PubMed DOI
McEver R. P. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res. 2015, 107 (3), 331–339. 10.1093/cvr/cvv154. PubMed DOI PMC
Blann A. D.; Nadar S. K.; Lip G. Y. H. The adhesion molecule P-selectin and cardiovascular disease. Eur. Heart J. 2003, 24 (24), 2166–2179. 10.1016/j.ehj.2003.08.021. PubMed DOI
Ushiyama S.; Laue T. M.; Moore K. L.; Erickson H. P.; McEver R. P. Structural and functional characterization of monomeric soluble P-selectin and comparison with membrane P-selectin. J. Biol. Chem. 1993, 268 (20), 15229–15237. 10.1016/S0021-9258(18)82460-7. PubMed DOI
Richter R. P.; Baranova N. S.; Day A. J.; Kwok J. C. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets?. Curr. Opin. Struct. Biol. 2018, 50, 65–74. 10.1016/j.sbi.2017.12.002. PubMed DOI
He L.; Niemeyer B. A novel correlation for protein diffusion coefficients based on molecular weight and radius of gyration. Biotechnol. Prog. 2003, 19 (2), 544–548. 10.1021/bp0256059. PubMed DOI
Lata S.; Reichel A.; Brock R.; Tampé R.; Piehler J. High-affinity adaptors for switchable recognition of histidine-tagged proteins. J. Am. Chem. Soc. 2005, 127 (29), 10205–10215. 10.1021/ja050690c. PubMed DOI
Reader P. P.; Shaw A. M. Kinetic analysis of the multivalent ligand binding interaction between protein A/G and IgG: A standard system setting. J. Phys. Chem. B 2017, 121 (38), 8919–8925. 10.1021/acs.jpcb.7b06163. PubMed DOI
Howarth M.; Chinnapen D. J.-F.; Gerrow K.; Dorrestein P. C.; Grandy M. R.; Kelleher N. L.; El-Husseini A.; Ting A. Y. A monovalent streptavidin with a single femtomolar biotin binding site. Nat. Methods 2006, 3 (4), 267–273. 10.1038/nmeth861. PubMed DOI PMC
Chivers C. E.; Crozat E.; Chu C.; Moy V. T.; Sherratt D. J.; Howarth M. A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat. Methods 2010, 7 (5), 391–393. 10.1038/nmeth.1450. PubMed DOI PMC
Bastings M. M.; Helms B. A.; van Baal I.; Hackeng T. M.; Merkx M.; Meijer E. W. From phage display to dendrimer display: insights into multivalent binding. J. Am. Chem. Soc. 2011, 133 (17), 6636–6641. 10.1021/ja110700x. PubMed DOI
Reviakine I.; Brisson A. Streptavidin 2D Crystals on Supported Phospholipid Bilayers: Toward Constructing Anchored Phospholipid Bilayers. Langmuir 2001, 17 (26), 8293–8299. 10.1021/la010626i. DOI