Cataloging SCN resistance loci in North American public soybean breeding programs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38053759
PubMed Central
PMC10694258
DOI
10.3389/fpls.2023.1270546
Knihovny.cz E-zdroje
- Klíčová slova
- SCN (Heterodera glycines Ichinohe), genome wide association study (GWAS), resistance to Heterodera glycines 1 (Rhg1), soybean (Glycine max (L.) Merr.), α-soluble N-ethylmaleimide sensitive factor attachment protein (α-SNAP),
- Publikační typ
- časopisecké články MeSH
Soybean cyst nematode (SCN) is a destructive pathogen of soybeans responsible for annual yield loss exceeding $1.5 billion in the United States. Here, we conducted a series of genome-wide association studies (GWASs) to understand the genetic landscape of SCN resistance in the University of Missouri soybean breeding programs (Missouri panel), as well as germplasm and cultivars within the United States Department of Agriculture (USDA) Uniform Soybean Tests-Northern Region (NUST). For the Missouri panel, we evaluated the resistance of breeding lines to SCN populations HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2), HG 0 (Race 3), HG 2.5.7 (Race 5), and HG 1.3.6.7 (Race 14) and identified seven quantitative trait nucleotides (QTNs) associated with SCN resistance on chromosomes 2, 8, 11, 14, 17, and 18. Additionally, we evaluated breeding lines in the NUST panel for resistance to SCN populations HG 2.5.7 (Race 1) and HG 0 (Race 3), and we found three SCN resistance-associated QTNs on chromosomes 7 and 18. Through these analyses, we were able to decipher the impact of seven major genetic loci, including three novel loci, on resistance to several SCN populations and identified candidate genes within each locus. Further, we identified favorable allelic combinations for resistance to individual SCN HG types and provided a list of available germplasm for integration of these unique alleles into soybean breeding programs. Overall, this study offers valuable insight into the landscape of SCN resistance loci in U.S. public soybean breeding programs and provides a framework to develop new and improved soybean cultivars with diverse plant genetic modes of SCN resistance.
Department of Agronomy and Plant Genetics University of Minnesota St Paul MN United States
Department of Biochemistry Faculty of Science Palacky University Olomouc Olomouc Czechia
Division of Plant Science and Technology University of Missouri Columbia MO United States
Zobrazit více v PubMed
Anand S. C. (1992). Registration of ‘Hartwig’ soybean. Crop Sci. 32 (4), 1069–1070. doi: 10.2135/cropsci1992.0011183X003200040054x DOI
Anand S. C., Shannon J. G., Wrather J. A., Arelli P. R., Sleper D. A., Young L. D. (2004). Registration of S97-1688 soybean germplasm line high in protein content and resistant to soybean cyst nematode. Crop Sci. 44 (2), 698–700. doi: 10.2135/cropsci2004.6980 DOI
Bandara A. Y., Weerasooriya D. K., Bradley C. A., Allen T. W., Esker P. D. (2020). Dissecting the economic impact of soybean diseases in the United States over two decades. PloS One 15 (4), e0231141. doi: 10.1371/journal.pone.0231141 PubMed DOI PMC
Basnet P., Meinhardt C. G., Usovsky M., Gillman J. D., Joshi T., Song Q., et al. . (2022). Epistatic interaction between Rhg1-a and Rhg2 in PI 90763 confers resistance to virulent soybean cyst nematode populations. Theor. Appl. Genet. 135 (6), 2025–2039. doi: 10.1007/s00122-022-04091-2 PubMed DOI PMC
Bayless A. M., Smith J. M., Song J., McMinn P. H., Teillet A., August B. K., et al. . (2016). Disease resistance through impairment of α-SNAP–NSF interaction and vesicular trafficking by soybean Rhg1 . Proc. Natl. Acad. Sci. 113 (47), E7375–E7382. doi: 10.1073/pnas.1610150113 PubMed DOI PMC
Bayless A. M., Zapotocny R. W., Grunwald D. J., Amundson K. K., Diers B. W., Bent A. F. (2018). An atypical N-ethylmaleimide sensitive factor enables the viability of nematode-resistant Rhg1 soybeans. Proc. Natl. Acad. Sci. 115 (19), E4512–E4521. doi: 10.1002/pld3.164 PubMed DOI PMC
Bayless A. M., Zapotocny R. W., Han S., Grunwald D. J., Amundson K. K., Bent A. F. (2019). The rhg1-a (Rhg1 low-copy) nematode resistance source harbors a copia-family retrotransposon within the Rhg1-encoded α-SNAP gene. Plant Direct 3 (8), e00164. doi: 10.1002/pld3.164 PubMed DOI PMC
Biová J., Dietz N., Chan Y. O., Joshi T., Bilyeu K., Škrabišová M. (2023). AccuCalc: A python package for accuracy calculation in GWAS. Genes 14 (1), 123. doi: 10.3390/genes14010123 PubMed DOI PMC
Brim C. A., Ross J. P. (1966). Registration of Pickett soybeans 1 (Reg. No. 52). Crop Sci. 6 (3), 305–305. doi: 10.2135/cropsci1966.0011183X000600030041x DOI
Cai G., Brock A. (2022). The Uniform Soybean Tests: Northern Region 2022. USDA-ARS.
Chan Y. O., Dietz N., Zeng S., Wang J., Flint-Garcia S., Salazar-Vidal M. N., et al. . (2023). The Allele Catalog Tool: a web-based interactive tool for allele discovery and analysis. BMC Genomics 24 (1), 107. doi: 10.1186/s12864-023-09161-3 PubMed DOI PMC
Chowdhury I. A., Yan G., Plaisance A., Markell S. (2021). Characterization of virulence phenotypes of soybean cyst nematode (Heterodera glycines) populations in North Dakota. Phytopathology 111 (11), 2100–2109. doi: 10.1094/PHYTO-01-21-0031-R PubMed DOI
Cingolani P., Platts A., Wang L. L., Coon M., Nguyen T., Wang L., et al. . (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. fly 6 (2), 80–92. doi: 10.4161/fly.19695 PubMed DOI PMC
Cook D. E., Bayless A. M., Wang K., Guo X., Song Q., Jiang J., et al. . (2014). Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode. Plant Physiol. 165 (2), 630–647. doi: 10.1104/pp.114.235952 PubMed DOI PMC
Cook D. E., Lee T. G., Guo X. L., Melito S., Wang K., Bayless A. M., et al. . (2012). Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338 (6111), 1206–1209. doi: 10.1126/science.1228746 PubMed DOI
Doyle J. J., Doyle J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19 (1), 11–15.
Epps J. M., Hartwig E. E. (1967). Dyer, a new nematode-resistant soybean variety. University of Tennessee Agricultural Experiment Station.
Guo B., Sleper D. A., Arelli P. R., Shannon J. G., Nguyen H. T. (2005). Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor. Appl. Genet. 111 (5), 965–971. doi: 10.1007/s00122-005-0031-2 PubMed DOI
Guo B., Sleper D. A., Nguyen H. T., Arelli P. R., Shannon J. G. (2006). Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A. Crop Sci. 46 (1), 224–233. doi: 10.2135/cropsci2004.0757 DOI
Han Y., Zhao X., Cao G., Wang Y., Li Y., Liu D., et al. . (2015). Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2. 3.5. 7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics 16 (1), 1–11. doi: 10.1186/s12864-015-1800-1 PubMed DOI PMC
Howland A., Monnig N., Mathesius J., Nathan M., Mitchum M. G. (2018). Survey of Heterodera glycines population densities and virulence phenotypes during 2015–2016 in Missouri. Plant Dis. 102 (12), 2407–2410. doi: 10.1094/PDIS-04-18-0650-SR PubMed DOI
Kadam S., Vuong T. D., Qiu D., Meinhardt C. G., Song L., Deshmukh R., et al. . (2016). Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci. 242, 342–350. doi: 10.1016/j.plantsci.2015.08.015 PubMed DOI
Kazi S., Shultz J., Afzal J., Hashmi R., Jasim M., Bond J., et al. . (2010). Iso-lines and inbred-lines confirmed loci that underlie resistance from cultivar ‘Hartwig’to three soybean cyst nematode populations. Theor. Appl. Genet. 120, 633–644. doi: 10.1007/s00122-009-1181-4 PubMed DOI
Lakhssassi N., Liu S., Bekal S., Zhou Z., Colantonio V., Lambert K., et al. . (2017). Characterization of the soluble NSF attachment protein gene family identifies two members involved in additive resistance to a plant pathogen. Sci. Rep. 7 (1), 1–11. doi: 10.1038/srep45226 PubMed DOI PMC
Lee T. G., Kumar I., Diers B. W., Hudson M. E. (2015). Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus. Mol. Ecol. 24 (8), 1774–1791. doi: 10.1111/mec.13138 PubMed DOI PMC
Liu S., Kandoth P. K., Lakhssassi N., Kang J., Colantonio V., Heinz R., et al. . (2017). The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat. Commun. 8 (1), 14822. doi: 10.1038/ncomms14822 PubMed DOI PMC
Liu S., Kandoth P. K., Warren S. D., Yeckel G., Heinz R., Alden J., et al. . (2012). A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492 (7428), 256–260. doi: 10.1038/nature11651 PubMed DOI
Luedders V. D., Williams L. F., Matson A. (1968). Registration of Custer soybeans 1 (Reg. No. 68). Crop Sci. 8 (3), 402–402. doi: 10.2135/cropsci1968.0011183X000800030060x DOI
Matsye P. D., Lawrence G. W., Youssef R. M., Kim K. H., Lawrence K. S., Matthews B. F., et al. . (2012). The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection. Plant Mol. Biol. 80, 131–155. doi: 10.1007/s11103-012-9932-z PubMed DOI
McCarville M., Marett C., Mullaney M., Gebhart G., Tylka G. (2016). Adaptation of soybean cyst nematode populations to the PI 88788 source of resistance from 2000 through 2015 in Iowa and the effects on soybean yields. Phytopathology 106 (12), 4–4. doi: 10.1094/PHP-RS-16-0062 DOI
McCarville M. T., Marett C. C., Mullaney M. P., Gebhart G. D., Tylka G. L. (2017). Increase in soybean cyst nematode virulence and reproduction on resistant soybean varieties in Iowa from 2001 to 2015 and the effects on soybean yields. Plant Health Prog. 18 (3), 146–155. doi: 10.1094/PHP-RS-16-0062 DOI
Mitchum M. G. (2016). Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology 106 (12), 1444–1450. doi: 10.1094/PHYTO-06-16-0227-RVW PubMed DOI
Niblack T. L., Arelli P. R., Noel G. R., Opperman C. H., Orf J. H., Schmitt D. P., et al. . (2002). A revised classification scheme for genetically diverse populations of Heterodera glycines . J. Nematol. 34 (4), 279. PubMed PMC
Niblack T. L., Tylka G. L., Arelli P., Bond J., Diers B., Donald P., et al. . (2009). A standard greenhouse method for assessing soybean cyst nematode resistance in soybean: SCE08 (standardized cyst evaluation 2008). Plant Health Prog. 10 (1), 33. doi: 10.1094/PHP-2009-0513-01-RV DOI
Patil G. B., Lakhssassi N., Wan J., Song L., Zhou Z., Klepadlo M., et al. . (2019). Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. Plant Biotechnol. J. 17 (8), 1595–1611. doi: 10.1111/pbi.13086 PubMed DOI PMC
Riggs R. D., Schmitt D. P. (1988). Complete characterization of the race scheme for Heterodera glycines . J. Nematol. 20 (3), 392. PubMed PMC
Rincker K., Cary T., Diers B. W. (2017). Impact of soybean cyst nematode resistance on soybean yield. Crop Sci. 57 (3), 1373–1382. doi: 10.2135/cropsci2016.07.0628 DOI
Schmitt D. P., Shannon G. (1992). Differentiating soybean responses to Heterodera glycines races. Crop Sci. 32 (1), 275–277. doi: 10.2135/cropsci1992.0011183X003200010056x DOI
Schuster I., Abdelnoor R. V., Marin S. R. R., Carvalho V. P., Kiihl R. A. S., Silva J. F. V., et al. . (2001). Identification of a new major QTL associated with resistance to soybean cyst nematode (Heterodera glycines). Theor. Appl. Genet. 102, 91–96. doi: 10.1007/s001220051622 DOI
Segura V., Vilhjálmsson B. J., Platt A., Korte A., Seren Ü., Long Q., et al. . (2012). An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44 (7), 825–830. doi: 10.1038/ng.2314 PubMed DOI PMC
Shaibu A. S., Zhang S. R., Ma J. K., Feng Y., Huai Y. Y., Qi J., et al. . (2022). The GmSNAP11 contributes to resistance to soybean cyst nematode race 4 in glycine max. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.939763 PubMed DOI PMC
Shannon J. G., Sleper D. A., Wrather J. A. (2015). Soybean variety S05-11482.. U.S. Patent and Trademark Office, U.S. Patent 9204603.
Škrabišová M., Dietz N., Zeng S., Chan Y. O., Wang J., Liu Y., et al. . (2022). A novel Synthetic phenotype association study approach reveals the landscape of association for genomic variants and phenotypes. J. Advanced Res. 42, 117–133. doi: 10.1016/j.jare.2022.04.004 PubMed DOI PMC
Song Q., Yan L., Quigley C., Fickus E., Wei H., Chen L., et al. . (2020). Soybean BARCSoySNP6K: An assay for soybean genetics and breeding research. Plant J. 104 (3), 800–811. doi: 10.1111/tpj.14960 PubMed DOI PMC
St-Amour V. T. B., Mimee B., Torkamaneh D., Jean M., Belzile F., O'Donoughue L. S. (2020). Characterizing resistance to soybean cyst nematode in PI 494182, an early maturing soybean accession. Crop Sci. 60 (4), 2053–2069. doi: 10.1002/csc2.20162 DOI
Suzuki C., Taguchi-Shiobara F., Ikeda C., Iwahashi M., Matsui T., Yamashita Y., et al. . (2020). Mapping soybean rhg2 locus, which confers resistance to soybean cyst nematode race 1 in combination with rhg1 and Rhg4 derived from PI 84751. Breed. Sci. 70 (4), 474–480. doi: 10.1270/jsbbs.20035 PubMed DOI PMC
Tian Y., Li D., Wang X., Zhang H., Wang J., Yu L., et al. . (2023). Deciphering the genetic basis of resistance to soybean cyst nematode combining IBD and association mapping. Theor. Appl. Genet. 136 (3), 50. doi: 10.1007/s00122-023-04268-3 PubMed DOI PMC
Tran D. T., Steketee C. J., Boehm J. D., Jr., Noe J., Li Z. (2019). Genome-wide association analysis pinpoints additional major genomic regions conferring resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00401 PubMed DOI PMC
Usovsky M., Meinhardt C. G., Dietz N., Triller M., Basnet P., Dhital B., et al. . (2023). Loss-of-function of an α-SNAP gene confers resistance to soybean cyst nematode. Nat. Commun. doi: 10.1038/s41467-023-43295-y PubMed DOI PMC
Usovsky M., Lakhssassi N., Patil G. B., Vuong T. D., Piya S., Hewezi T., et al. . (2021). Dissecting nematode resistance regions in soybean revealed pleiotropic effect of soybean cyst and reniform nematode resistance genes. Plant Genome 14 (2), e20083. doi: 10.1002/tpg2.20083 PubMed DOI
VanRaden P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91 (11), 4414–4423. doi: 10.3168/jds.2007-0980 PubMed DOI
Vuong T. D., Sonah H., Meinhardt C. G., Deshmukh R., Kadam S., Nelson R. L., et al. . (2015). Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16, 1–13. doi: 10.1186/s12864-015-1811-y PubMed DOI PMC
Vuong T. D., Sonah H., Patil G., Meinhardt C., Usovsky M., Kim K. S., et al. . (2021). Identification of genomic loci conferring broad-spectrum resistance to multiple nematode species in exotic soybean accession PI 567,305. Theor. Appl. Genet. 134 (10), 3379–3395. doi: 10.1007/s00122-021-03903-1 PubMed DOI
Wang J., Zhang Z. (2021). GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genom. Proteomics Bioinf. 19 (4), 629–640. doi: 10.1016/j.gpb.2021.08.005 PubMed DOI PMC
Wu X., Blake S., Sleper D. A., Shannon J. G., Cregan P., Nguyen H. T. (2009). QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor. Appl. Genet. 118, 1093–1105. doi: 10.1007/s00122-009-0965-x PubMed DOI
Yu J., Pressoir G., Briggs W. H., Vroh Bi I., Yamasaki M., Doebley J. F., et al. . (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38 (2), 203–208. doi: 10.1038/ng1702 PubMed DOI
Zhang H., Li C., Davis E. L., Wang J., Griffin J. D., Kofsky J., et al. . (2016). Genome-wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG Type 2.5. 7 in wild soybean (Glycine soja). Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01214 PubMed DOI PMC
Zhang H., Song Q., Griffin J. D., Song B. H. (2017). Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines). Mol. Genet. Genomics 292 (6), 1257–1265. doi: 10.1007/s00438-017-1345-x PubMed DOI PMC
Zhu C., Gore M., Buckler E. S., Yu J. (2008). Status and prospects of association mapping in plants. Plant Genome 1 (1). doi: 10.3835/plantgenome2008.02.0089 DOI