Nature and Redox Properties of Iron Sites in Zeolites Revealed by Mössbauer Spectroscopy
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article, Review
Grant support
#21-45567L=2020/39/I/ST4/02559
Czech Science Foundation
#22-06737S
Czech Science Foundation
MSMT-1000/2016
CATPRO
LM2015039
CATPRO
- Keywords
- Mössbauer spectroscopy, N2O decomposition, iron sites, methane, zeolites,
- Publication type
- Journal Article MeSH
- Review MeSH
Iron-containing zeolite-based catalysts play a pivotal role in environmental processes aimed at mitigating the release of harmful greenhouse gases, such as nitrous oxide (N2O) and methane (CH4). Despite the rich iron chemistry in zeolites, only a fraction of iron species that exhibit an open coordination sphere and possess the ability for electron transfer are responsible for activating reagents. In addition, the splitting of molecular oxygen is facilitated by bare iron cations embedded in zeolitic matrices. Mössbauer spectroscopy is the ideal tool for investigating the valency and geometry of iron species in zeolites because it leaves no iron forms silent and provides insights into in-situ processes. This review is dedicated to the utilization of Mössbauer spectroscopy to elucidate the nature of the extra-framework iron centers in ferrierite (FER), beta-structured (*BEA), and ZSM-5 zeolite (MFI) zeolites, which are active in N2O decomposition and CH4 oxidation through using the active oxygen derived from N2O and O2. In this work, a structured summary of the Mössbauer parameters established over the last two decades is presented, characterizing the specific iron active centers and intermediates formed upon iron's interaction with N2O/O2 and CH4. Additionally, the impact of preparation methods, iron loading, and the long-term stability on iron speciation and its redox behavior under reaction conditions is discussed.
See more in PubMed
M. Konsolakis, ACS Catal. 2015, 5, 6397–6421;
Q. Zhang, J. H. Yu, A. Corma, Adv. Mater. 2020, 32, 2002927;
R. B. Jackson, E. I. Solomon, J. G. Canadell, M. Cargnello, C. B. Field, Nat. Sustain. 2019, 2, 436–438.
G. Zhao, K. Chodyko, E. Benhelal, A. Adesina, E. Kennedy, M. Stockenhuber, J. Catal. 2021, 400, 10–19;
G. Zhao, M. Drewery, J. Mackie, T. Oliver, E. M. Kennedy, M. Stockenhuber, Energy Technol. 2020, 8, 1900665;
D. Pietrogiacomi, M. C. Campa, L. R. Carbone, M. Occhiuzzi, Appl. Catal. B 2019, 240, 19–29;
I. Melian-Cabrera, E. R. H. van Eck, S. Espinosa, S. Siles-Quesada, L. Falco, A. P. M. Kentgens, F. Kapteijn, J. A. Moulijn, Appl. Catal. B 2017, 203, 218–226;
M. C. Campa, D. Pietrogiacomi, M. Occhiuzzi, Appl. Catal. B 2015, 168, 293–302;
J. P. Lange, V. L. Sushkevichk, A. J. Knorpp, J. A. van Bokhoven, Ind. Eng. Chem. Res. 2019, 58, 8674–8680;
A. J. Knorpp, M. A. Newton, V. L. Sushkevich, P. P. Zimmermann, A. B. Pinar, J. A. van Bokhoven, Catal. Sci. Technol. 2019, 9, 2806–2811.
B. E. R. Snyder, M. L. Bols, R. A. Schoonheydt, B. F. Sels, E. I. Solomon, Chem. Rev. 2018, 118, 2718–2768;
B. E. R. Snyder, P. Vanelderen, M. L. Bols, S. D. Hallaert, L. H. Bottger, L. Ungur, K. Pierloot, R. A. Schoonheydt, B. F. Sels, E. I. Solomon, Nature 2016, 536, 317–321;
K. A. Dubkov, N. S. Ovanesyan, A. A. Shteinman, E. V. Starokon, G. I. Panov, J. Catal. 2002, 207, 341–352.
G. W. Huber, A. Corma, Chem. Int. Ed. 2007, 46, 7184–7201;
P. Sazama, B. Wichterlova, E. Tabor, P. Stastny, N. K. Sathu, Z. Sobalik, J. Dedecek, S. Sklenak, P. Klein, A. Vondrova, J. Catal. 2014, 312, 123–138;
J. Dedecek, Z. Sobalik, B. Wichterlova, Catal. Rev. Sci. Eng. 2012, 54, 135–223.
E. Tabor, M. Bernauer, B. Wichterlova, J. Dedecek, Catal. Sci. Technol. 2019, 9, 4262–4275;
J. Dedecek, E. Tabor, S. Sklenak, ChemSusChem 2019, 12, 556–576.
C. G. Li, A. Vidal-Moya, P. J. Miguel, J. Dedecek, M. Boronat, A. Corma, ACS Catal. 2018, 8, 7688–7697;
J. M. Findley, P. I. Ravikovitch, D. S. Sholl, J. Phys. Chem. C 2018, 122, 12332–12340;
K. T. Dinh, M. M. Sullivan, P. Serna, R. J. Meyer, M. Dinca, Y. Roman-Leshkov, ACS Catal. 2018, 8, 8306–8313.
H. M. Rhoda, A. J. Heyer, B. E. R. Snyder, D. Plessers, M. L. Bols, R. A. Schoonheydt, B. F. Sels, E. I. Solomon, Chem. Rev. 2022, 122, 12207–12243;
B. E. R. Snyder, M. L. Bols, H. M. Rhoda, D. Plessers, R. A. Schoonheydt, B. F. Sels, E. I. Solomon, Science 2021, 373, 327–331;
M. L. Bols, B. E. R. Snyder, H. M. Rhoda, P. Cnudde, G. Fayad, R. A. Schoonheydt, V. Van Speybroeck, E. I. Solomon, B. F. Sels, Nat. Catal. 2021, 4, 332–340;
M. L. Bols, S. D. Hallaert, B. E. R. Snyder, J. Devos, D. Plessers, H. M. Rhoda, M. Dusselier, R. A. Schoonheydt, K. Pierloot, E. I. Solomon, B. F. Sels, J. Am. Chem. Soc. 2018, 140, 12021–12032;
P. J. Smeets, J. S. Woertink, B. F. Sels, E. I. Solomon, R. A. Schoonheydt, Inorg. Chem. 2010, 49, 3573–3583.
P. Sazama, J. Moravkova, S. Sklenak, A. Vondrova, E. Tabor, G. Sadovska, R. Pilar, ACS Catal. 2020, 10, 3984–4002;
E. Tabor, G. Sádovská, M. Bernauer, P. Sazama, J. Nováková, V. Fíla, T. Kmječ, J. Kohout, K. Závěta, Z. Sobalík, Appl. Catal. B 2019, 240, 358–366;
J. Devos, M. L. Bols, D. Plessers, C. Van Goethem, J. W. Seo, S. J. Hwang, B. F. Sels, M. Dusselier, Chem. Mater. 2020, 32, 273–285;
G. N. Li, E. A. Pidko, I. A. W. Filot, R. A. van Santen, C. Li, E. J. M. Hensen, J. Catal. 2013, 308, 386–397.
K. Jisa, J. Novakova, M. Schwarze, A. Vondrova, S. Sklenak, Z. Sobalik, J. Catal. 2009, 262, 27–34.
E. Tabor, J. Dedecek, K. Mlekodaj, Z. Sobalik, P. C. Andrikopoulos, S. Sklenak, Sci. Adv. 2020, 6, eaaz9776.
E. Tabor, M. Lemishka, J. E. Olszowka, K. Mlekodaj, J. Dedecek, P. C. Andrikopoulos, S. Sklenak, ACS Catal. 2021, 11, 2340–2355.
P. Sazama, N. K. Sathu, E. Tabor, B. Wichterlová, Š. Sklenák, Z. Sobalík, J. Catal. 2013, 299, 188–203.
L. Guczi, K. Lázár, React. Kinet. Catal. Lett. 2009, 96, 335–343;
V. Blasin-Aubé, O. Marie, J. Saussey, A. Plesniar, M. Daturi, N. Nguyen, C. Hamon, M. Mihaylov, E. Ivanova, K. Hadjiivanov, J. Phys. Chem. C 2009, 113, 8387–8393;
E. Kuzmann, S. Nagy, A. Vértes, Pure Appl. Chem. 2003, 75, 801–858;
E. B. Philipp Gütlich, Alfred X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry, 1 ed., ISBN 978–3-662-50084-2, 2011.
P. Gütlich, J. Ensling, in Ullmann's Encyclopedia of Industrial Chemistry.
P. Fejes, I. Kiricsi, K. Lázár, I. Marsi, A. Rockenbauer, L. Korecz, J. B. Nagy, R. Aiello, F. Testa, Appl. Catal. A 2003, 242, 247–266;
K. Lázár, G. Lejeune, R. K. Ahedi, S. S. Shevade, A. N. Kotasthane, J. Phys. Chem. B 1998, 102, 4865–4870.
K. Lázár, O. Pozdnyakova, A. Wootsch, P. Fejes, Hyperfine Interact. 2006, 167, 779–784;
P. Fejes, K. Lazar, I. Marsi, A. Rockenbauer, L. Korecz, J. B. Nagy, S. Perathoner, G. Centi, Appl. Catal. A 2003, 252, 75–90;
P. Fejes, J. B. Nagy, K. Lázár, J. Halász, Appl. Catal. A 2000, 190, 117–135;
S. M. Maier, A. Jentys, E. Metwalli, P. Müller-Buschbaum, J. A. Lercher, J. Phys. Chem. Lett. 2011, 2, 950–955;
P. Boroń, L. Chmielarz, J. Gurgul, K. Łątka, B. Gil, J.-M. Krafft, S. Dzwigaj, Catal. Today 2014, 235, 210–225;
P. Boroń, L. Chmielarz, J. Gurgul, K. Łątka, B. Gil, B. Marszałek, S. Dzwigaj, Microporous Mesoporous Mater. 2015, 203, 73–85.
E. Ivanova, M. Mihaylov, K. Hadjiivanov, V. Blasin-Aubé, O. Marie, A. Plesniar, M. Daturi, Appl. Catal. B 2010, 93, 325–338.
E. Tabor, K. Zaveta, N. K. Sathu, Z. Tvaruzkova, Z. Sobalik, Catal. Today 2011, 169, 16–23;
Z. Sobalik, E. Tabor, J. Novakova, N. K. Sathu, K. Zaveta, J. Catal. 2012, 289, 164–170.
K. Mlekodaj, M. Lemishka, A. Kornas, D. K. Wierzbicki, J. E. Olszowka, H. Jirglova, J. Dedecek, E. Tabor, ACS Catal. 2023, 13, 3345–3355;
A. Kornas, E. Tabor, D. K. Wierzbicki, J. E. Olszowka, R. Pilar, J. Dedecek, M. Sliwa, H. Jirglova, S. Sklenak, D. Rutkowska-Zbik, K. Mlekodaj, Appl. Catal. B 2023, 336, 122915.
E. Tabor, K. Závěta, N. K. Sathu, A. Vondrová, P. Sazama, Z. Sobalík, Catal. Today 2011, 175, 238–244.
S. Sklenak, P. C. Andrikopoulos, B. Boekfa, B. Jansang, J. Novakova, L. Benco, T. Bucko, J. Hafner, J. Dedecek, Z. Sobalik, J. Catal. 2010, 272, 262–274.
G. Sádovská, M. Bernauer, B. Bernauer, E. Tabor, A. Vondrová, Z. Sobalík, Catal. Commun. 2018, 112, 58–62;
G. Sadovska, E. Tabor, P. Sazama, M. Lhotka, M. Bernauer, Z. Sobalik, Catal. Commun. 2017, 89, 133–137;
E. Tabor, K. Mlekodaj, G. Sadovska, M. Bernauer, P. Klein, P. Sazama, J. Dedecek, Z. Sobalik, Microporous Mesoporous Mater. 2019, 281, 15–22.
E. Tabor, M. Lemishka, Z. Sobalik, K. Mlekodaj, P. C. Andrikopoulos, J. Dedecek, S. Sklenak, Communs. Chem. 2019, 2, 71.
P. Boron, L. Chmielarz, J. Gurgul, K. Latka, T. Shishido, J.-M. Krafft, S. Dzwigaj, Appl. Catal. B 2013, 138, 434–445;
M. Mauvezin, G. Delahay, B. Coq, S. Kieger, J. C. Jumas, J. Olivier-Fourcade, J. Phys. Chem. B 2001, 105, 928–935.
Z. Sobalik, P. Sazama, J. Dedecek, B. Wichterlova, Appl. Catal. A 2014, 474, 178–185.
A. R. Overweg, M. W. J. Crajé, A. M. Van Der Kraan, I. W. C. E. Arends, A. Ribera, R. A. Sheldon, J. Catal. 2004, 223, 262–270.
N. S. Ovanesyan, K. A. Dubkov, A. A. Pyalling, A. A. Shteinman, J. Radioanal. Nucl. Chem. 2000, 246, 149–152.