Chemical Composition of Essential Oils and Supercritical Carbon Dioxide Extracts from Amomum kravanh, Citrus hystrix and Piper nigrum 'Kampot'

. 2023 Nov 24 ; 28 (23) : . [epub] 20231124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38067483

Grantová podpora
IGA 20233109 Czech University of Life Sciences Prague

The fruits of Amomum kravanh, Citrus hystrix and Piper nigrum 'Kampot' are traditionally used as spices in Cambodian cuisine. In this study, the chemical composition of essential oils (EOs) and supercritical CO2 extracts from all three species was determined using GC-MS, with two columns of different polarity (HP-5/DB-HeavyWAX). Differences between the chemical profile of the EOs and CO2 extracts were observed for all species. The greatest difference was detected in A. kravanh EO containing mainly eucalyptol (78.8/72.6%), while the CO2 extract was rich in fatty acids (13/55.92%) and long-chain alkanes (25.55/9.54%). Furthermore, the results for the CO2 extract of this species differed, where tricosane (14.74%) and oleic acid (29.26%) were the main compounds identified when utilizing the HP-5 or DB-HeavyWAX columns, respectively. Moreover, the EO and CO2 extract from P. nigrum 'Kampot' fruits and the CO2 extract from C. hystrix fruit peel, containing respective amounts 34.84/39.55% (for EO) and 54.21/55.86% (for CO2 extract) of β-caryophyllene and 30.2/28.9% of β-pinene, were isolated and analyzed for the first time. Generally, these findings suggest that supercritical CO2 could potentially be used for the extraction of all three spices. Nevertheless, further research determining the most efficient extraction parameters is required before its commercial application.

Zobrazit více v PubMed

Ceylan E., Fung D.Y.C. Antimicrobial activity of spices. J. Rapid. Methods Autom. Microbiol. 2004;12:1–55. doi: 10.1111/j.1745-4581.2004.tb00046.x. DOI

Peter K.V., Shylaja M.R. Handbook of Herbs and Spices. Elsevier; Amsterdam, The Netherlands: 2012. Introduction to herbs and spices: Definitions, trade and applications; pp. 1–24. DOI

Market Reports. 2021. [(accessed on 15 October 2022)]. Available online: https://www.marketsandmarkets.com/Market-Reports/spices-market-739.html.

Westphal E., Arora R.K., Prosea Project . Plant Resources of South-East Asia. Pudoc; Wageningen, The Netherlands: 1989.

Hammouti B., Asehraou A., Bouyanzer A., Dahmani M., Ettouhami A., Messali M., Touzani R., Warad I. Black pepper, the ‘king of spices’: Chemical composition to applications. Arab. J. Chem. Environ. Res. 2019;6:12–56.

Future Market Insights Reports. 2021. [(accessed on 2 November 2022)]. Available online: https://www.futuremarketinsights.com/reports/black-pepper-market.

Shylaja M.R., Peter K.V. Spices in the nutraceutical and health food industry. Acta Hortic. 2007;756:369–378. doi: 10.17660/ActaHortic.2007.756.39. DOI

Ade Groot C., Schmidt E. Essential oils, part III: Chemical composition. Dermatitis. 2016;27:161–169. doi: 10.1097/DER.0000000000000193. PubMed DOI

Moghaddam M., Mehdizadeh L. Soft Chemistry and Food Fermentation. Elsevier; Amsterdam, The Netherlands: 2017. Chemistry of essential oils and factors influencing their constituents; pp. 379–419. DOI

Viuda-Martos M., Fernandez-Lopez J., Perez-Alvarez J.-A., Ruiz-Navajas Y. Chemical composition of the essential oils obtained from some spices widely used in mediterranean region. Acta. Chim. Slov. 2007;54:921–926.

Ngo Q.M.T., Cao T.Q., Ha M.T., Hoang L.S., Min B.S., Woo M.H. Cytotoxic activity of alkaloids from the fruits of Piper nigrum. Nat. Prod. Commun. 2018;13:1934578X1801301. doi: 10.1177/1934578X1801301114. DOI

Rivera-Pérez A., Frenich A.G., Romero-González R. Determination and occurrence of alkenylbenzenes, pyrrolizidine and tropane alkaloids in spices, herbs, teas, and other plant-derived food products using chromatographic methods: Review from 2010–2020. Food Rev. Int. 2021;39:1110–1136. doi: 10.1080/87559129.2021.1929300. DOI

Embuscado M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods. 2015;18:811–819. doi: 10.1016/j.jff.2015.03.005. DOI

MSovilj N., Nikolovski B.G., Spasojević M.D. Critical review of supercritical fluid extraction of selected spice plant materials. Maced. J. Chem. Chem. Eng. 2011;30:197–220.

da Silva R.P.F.F., Duarte A.C., Rocha-Santos T.A.P. Supercritical fluid extraction of bioactive compounds. TrAC-Trends Anal. Chem. 2016;76:40–51. doi: 10.1016/j.trac.2015.11.013. DOI

Barbosa H.M.A., Coimbra M.A., de Melo M.M.R., Passos C.P., Silva C.M. Optimization of the supercritical fluid coextraction of oil and diterpenes from spent coffee grounds using experimental design and response surface methodology. J. Supercrit. Fluids. 2014;85:165–172. doi: 10.1016/j.supflu.2013.11.011. DOI

Fornari T., García-Risco M.R., Reglero G., Vázquez E., Vicente G. Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J. Chromatogr. A. 2012;1250:34–48. doi: 10.1016/j.chroma.2012.04.051. PubMed DOI

Montalbán M.G., Víllora G. Phase equilibria with Supercritical Carbon Dioxide–Application to the Components of a Biocatalytic Process. IntechOpen; London, UK: 2022. Supercritical fluids: Properties and applications. DOI

Uwineza P.A., Waśkiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules. 2020;25:3847. doi: 10.3390/molecules25173847. PubMed DOI PMC

Danh L.T., Foster N., Han L.N., Mammucari R., Triet N.D.A., Zhao J. Comparison of chemical composition, antioxidant and antimicrobial activity of lavender (Lavandula angustifolia L.) essential oils extracted by supercritical CO2, hexane and hydrodistillation. Food Bioproc. Technol. 2013;6:3481–3489. doi: 10.1007/s11947-012-1026-z. DOI

Marongiu B., Cavaleiro C., Frau M.A., Goncalves M.J., Maxia A., Piras A., Porcedda S., Salgueiro L., Tuveri E. Isolation of the volatile fraction from Apium graveolens L. (apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: Chemical composition and antifungal activity. Nat. Prod. Res. 2013;27:1521–1527. doi: 10.1080/14786419.2012.725402. PubMed DOI

Maxia A., Cabral C., Cavaleiro C., Falconieri D., Frau M.A., Goncalves M.J., Marongiu B., Piras A., Porcedda S., Salgueiro L. Chemical composition and antifungal activity of essential oils and supercritical CO2 extracts of Apium nodiflorum (L.) lag. Mycopathologia. 2012;174:61–67. doi: 10.1007/s11046-011-9519-2. PubMed DOI

Mesomo M.C., Cardozo L., Corazza M.L., Santa O.R.D., Ndiaye P.M., de P.A. Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale r.): Chemical composition and antibacterial activity. J. Supercrit. Fluids. 2013;80:44–49. doi: 10.1016/j.supflu.2013.03.031. DOI

Ooraikul B., Sirichote A., Siripongvutikorn S. Wild-Type Food in Health Promotion and Disease Prevention. Humana Press; Totowa, NJ, USA: 2008. Southeast Asian Diets and Health Promotion; pp. 515–533. DOI

In S., Camel V., Lambre C., Ouldhelkim M. Regional and seasonal variations of food consumption in Cambodia. Malays. J. Nutr. 2015;21:44–49.

Verner V., Chaloupkova P., Kosova M., Kokoska L., Nguon S., Van Damme P. Tourists’ preferences for traditional food products as indicators of market potential of the market potential of underutilized species in Cambodia. Agriculture. 2023;13:1599. doi: 10.3390/agriculture13081599. DOI

Morm E., Debaste F., Haut B., Horn S., In S., Ma K. Experimental characterization of the drying of kampot red pepper (Piper nigrum L.) Foods. 2020;9:1532. doi: 10.3390/foods9111532. PubMed DOI PMC

Jantan I., Ahmad A.S., Ahmad A.R., Ali N.A.M., Ayop N. Chemical composition of some Citrus oils from Malaysia. J. Essent. Oil Res. 1996;8:627–632. doi: 10.1080/10412905.1996.9701030. DOI

Suresh A., Ayyasamy S., Rathinasamy M., Velusamy S. Techniques for essential oil extraction from kaffir lime and its application in health care products—A review. Flavour. Fragr. J. 2021;36:5–21. doi: 10.1002/ffj.3626. DOI

Waikedre J., Barrachina I., Cabalion P., Dugay A., Fournet A., Herrenknecht C. Chemical composition and antimicrobial activity of the essential oils from new caledonian Citrus macroptera and Citrus hystrix. Chem. Biodivers. 2010;7:871–877. doi: 10.1002/cbdv.200900196. PubMed DOI

Diao W.-R., Feng S.L.-L., Xu J.-G., Zhang S. Chemical composition, antibacterial activity, and mechanism of action of the essential oil from Amomum kravanh. J. Food Prot. 2014;77:1740–1746. doi: 10.4315/0362-028X.JFP-14-014. PubMed DOI

Feng X., Jiang Z.-T., Li R., Wang Y. Composition comparison of essential oils extracted by hydro distillation and microwave-assisted hydrodistillation from Amomum kravanh and Amomum compactum. J. Essent. Oil Bear. Plants. 2011;14:354–359. doi: 10.1080/0972060X.2011.10643945. DOI

Zhang J.-S., Cao X.-X., Zhang H. Chemical constituents from the fruits of Amomum kravanh. Biochem. Syst. Ecol. 2020;92:104127. doi: 10.1016/j.bse.2020.104127. DOI

Yothipitak W., Boonnoun P., Goto M., Shotipruk A., Tonanon N. Response surface methodology to supercritical carbon dioxide extraction of essential oil from Amormum krevanh Pierre. Sep. Sci. Technol. 2009;44:3923–3936. doi: 10.1080/01496390903255788. DOI

Norkaew O., Pitija K., Pripdeevech P., Sookwong P., Wongpornchai S. Supercritical fluid extraction and gas chromatographic-mass spectrometric analysis of terpenoids in fresh kaffir lime leaf oil. Chiang Mai J. Sci. 2013;40:240–247.

Okumura T. Retention Indices of Environmental Chemicals on Methyl Silicone Capillary Column. J. Environ. Chem. 1991;1:333–358. doi: 10.5985/jec.1.333. DOI

Nibret E., Wink M. Volatile components of four Ethiopian Artemisia species extracts and their in vitro antitrypanosomal and cytotoxic activities. Phytomedicine. 2010;17:369–374. doi: 10.1016/j.phymed.2009.07.016. PubMed DOI

Andriamaharavo N.R. Retention Data NIST Mass Spectrometry Data Center, NIST Mass Spectrometry Data Center. Retrieved March. 2014;17:2015.

Zhao Y., Li J., Xu Y., Duan H., Fan W., Zhao G. Extraction, preparation and identification of volatile compounds in Changyu XO Brandy. Chin. J. Chromatogr. 2008;26:212–222. doi: 10.1016/S1872-2059(08)60014-0. PubMed DOI

Xu L.-L., Han T., Wu J.-Z., Zhang Q., Zhang H., Huang B., Rahman K., Quin P. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine. 2009;16:609–616. doi: 10.1016/j.phymed.2009.03.014. PubMed DOI

Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured Publishing Corporation; Carol Stream, IL, USA: 2007.

Liu J., Nan P., Tsering Q., Bai Z., Wang L., Zhijun L., Zhong Y. Volatile constituents of the leaves and flowers of Salvia przewalskii Maxim. from Tibet. Flavour. Fragr. J. 2006;21:435–438. doi: 10.1002/ffj.1607. DOI

Roussis V., Tsoukatou M., Petrakis P.V., Chinou I., Skoula M., Harborne J.B. Volatile constituents of four Helichrysum species growing in Greece. Biochem. Syst. Ecol. 2000;28:163–175. doi: 10.1016/S0305-1978(99)00046-0. DOI

Palic R., Stojanovic G., Alagic S., Nikolic M., Lepojevic Z. Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of the oriental tobacco, Prilep. Flavour. Fragr. J. 2002;17:323–326. doi: 10.1002/ffj.1084. DOI

Tret’yakov K. Retention data NIST mass spectrometry data center, NIST Mass Spectrom. [(accessed on 10 November 2023)];Data Cent. 2007 Available online: https://chemdata.nist.gov/

Sabulal N., Baby S. Chemistry of Amomum essential oils. J. Essent. Oil Res. 2021;33:427–441. doi: 10.1080/10412905.2021.1899065. DOI

Yu G.-W., Cheng Q., Lee M., Li Z., Nie J., Wang X. Microwave hydrodistillation based on deep eutectic solvent for extraction and analysis of essential oil from three Amomum species using gas chromatography–mass spectrometry. Chromatographia. 2018;81:657–667. doi: 10.1007/s10337-018-3482-8. DOI

David F., Sandra P., Vickers A.K. Column selection for the analysis of fatty acid methyl esters. Food Anal. Appl. 2005;19:19.

Woo S.-G., Bang S., Lee J., Lee M., On K., Park J., Yoo K. Comparison of fatty acid analysis methods for assessing biorefinery applicability of wastewater cultivated microalgae. Talanta. 2012;97:103–110. doi: 10.1016/j.talanta.2012.04.002. PubMed DOI

Sato A., Asano K., Sato T. The chemical composition of Citrus hystrix DC (swangi) J. Essent. Oil Res. 1990;2:179–183. doi: 10.1080/10412905.1990.9697857. DOI

Tran T.K.N., Bach L.G., Huynh X.P., Ngo T.C.Q., Tran T.H., Tran T.T. Comparison of volatile compounds and antibacterial activity of Citrus aurantifolia, Citrus latifolia, and Citrus hystrix shell essential oils by pilot extraction. IOP Conf. Ser. Mater. Sci. Eng. 2021;1092:012076. doi: 10.1088/1757-899X/1092/1/012076. DOI

Li G., Cheng Y., Han L., Long X., Pan Y., Xiang S., Zhao X. Effects of cold-pressing and hydrodistillation on the active non-volatile components in lemon essential oil and the effects of the resulting oils on aging-related oxidative stress in mice. Front. Nutr. 2021;8:689094. doi: 10.3389/fnut.2021.689094. PubMed DOI PMC

Le X.T., Ha P.T.H., Hien T.T., Ngan T.T.K., Phong H.X. Extraction of essential oils and volatile compounds of kaffir lime (Citrus hystrix DC.) by hydrodistillation method. IOP Conf. Ser. Mater. Sci. Eng. 2020;991:012024. doi: 10.1088/1757-899X/991/1/012024. DOI

Lu Q., Huang N., Peng Y., Zhu C. Peel oils from three citrus species: Volatile constituents, antioxidant activities and related contributions of individual components. J. Food Sci. Technol. 2019;56:4492–4502. doi: 10.1007/s13197-019-03937-w. PubMed DOI PMC

Russo M., Arigò A., Dugo P., Mondello L., Rigano F. Coumarins, psoralens and polymethoxyflavones in cold-pressed citrus essential oils: A review. J. Essent. Oil Res. 2021;33:221–239. doi: 10.1080/10412905.2020.1857855. DOI

Ferhat M.A., Chemat F., Meklati B.Y. Comparison of different isolation methods of essential oil fromcitrus fruits: Cold pressing, hydrodistillation and microwave ‘dry’ distillation. Flavour. Fragr. J. 2007;22:494–504. doi: 10.1002/ffj.1829. DOI

Luca S.V., Kittl T., Minceva M. Supercritical CO2 extraction of spices: A systematic study with focus on terpenes and piperamides from black pepper (Piper nigrum L.) Food Chem. 2023;406:135090. doi: 10.1016/j.foodchem.2022.135090. PubMed DOI

Andriana Y., Le Q.-T., Quy T.N., Tran H.-D., Xuan T.D. Biological activities and chemical constituents of essential oils from Piper cubeba Bojer and Piper nigrum L. Molecules. 2019;24:1876. doi: 10.3390/molecules24101876. PubMed DOI PMC

Li Y., Chen L., Liu M., Pan S., Tian J., Yang K., Zemg X., Zhang C. Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. LWT. 2020;117:108644. doi: 10.1016/j.lwt.2019.108644. DOI

Kapoor I.P.S., Catalan C.A.N., De Heluani C.S., De Lampasona M.P., Singh B., Singh G. Chemistry and in vitro antioxidant activity of volatile oil and oleoresins of black pepper (Piper nigrum) J. Agric. Food Chem. 2009;57:5358–5364. doi: 10.1021/jf900642x. PubMed DOI

Bagheri H., Manap M.Y.B.A., Solati Z. Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation. Talanta. 2014;121:220–228. doi: 10.1016/j.talanta.2014.01.007. PubMed DOI

Andrade K.S., Ferreira S.R.S., Trivellin G. Piperine-rich extracts obtained by high pressure methods. J. Supercrit. Fluids. 2017;128:370–377. doi: 10.1016/j.supflu.2017.05.001. DOI

Topal U., Goto M., Otles S., Sasaki M. Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. Int. J. Food Sci. Nutr. 2008;59:619–634. doi: 10.1080/09637480701553816. PubMed DOI

EDQM . European Pharmacopoeia 8.0. EDQM; Strasbourg, France: 2013.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...