• This record comes from PubMed

Comparison between Organic and Inorganic Zinc Forms and Their Combinations with Various Dietary Fibers in Respect of the Effects on Electrolyte Concentrations and Mucosa in the Large Intestine of Pigs

. 2023 Nov 25 ; 24 (23) : . [epub] 20231125

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV-21-0301 Slovak Research and Development Agency
2/0008/21 Slovak Grant Agency VEGA

This study aimed to determine the effects of Zn sources, used with potato fiber (PF) or lignocellulose (LC), on electrolyte concentration and the mucus layer in the large intestine of pigs. The experiment involved 24 barrows with an initial body weight of 10.8 ± 0.82 kg, divided into four groups fed the following diets: LC and ZnSO4, LC and Zn glycinate (ZnGly), PF and ZnSO4, or PF and ZnGly. Fiber supplements provided 10 g crude fiber/kg diet, while Zn additives introduced 120 mg Zn/kg diet. After four weeks of feeding, the pigs were sacrificed and digesta and tissue samples were taken from the cecum and colon. PF increased the water content and decreased the phosphorus concentration in the large intestine in comparison with LC. PF also increased calcium, iron, and chloride concentrations in the descending colon. Mucus layer thickness and histological parameters of the large intestine were not affected. ZnGly diets increased MUC12 expression in the cecum as compared to the LC-ZnSO4 group. In the ascending colon, the PF-ZnGly diet increased MUC5AC expression, while both PF groups had greater MUC20 expression in comparison with the LC-ZnSO4 group. In the transverse colon, the LC-ZnGly group and both PF groups had higher MUC5AC expression in comparison with the LC-ZnSO4 group, and both ZnGly groups had higher MUC20 expression than ZnSO4 groups. PF and ZnGly increased MUC4 and MUC5AC expression in the descending colon. PF and ZnGly may exert a beneficial effect on colon health in pigs by upregulating the expression of the MUC5AC and MUC20 genes and are more effective than LC and ZnSO4.

See more in PubMed

Williams B.A., Verstegen M.W.A., Tamminga S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 2001;14:207–227. doi: 10.1079/NRR200127. PubMed DOI

Chaudhry R., Bamola V.D., Samanta P., Dubey D., Bahadur T., Chandan M., Yiwary S., Gahlowt A., Nair N., Kaur H., et al. Immunoglobulin receptors expression in Indian colon cancer patients and healthy subjects using noninvasive approach and flow cytometry. Int. J. App. Basic Med. Res. 2020;10:194–199. doi: 10.4103/ijabmr.IJABMR_191_19. PubMed DOI PMC

Hansson G.C., Johansson M.E.V. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes. 2010;1:51–54. doi: 10.4161/gmic.1.1.10470. PubMed DOI PMC

Blachier F., Andriamihaja M., Kong X.-F. Fate of undigested proteins in the pig large intestine: What impact on the colon epithelium? Anim. Nutr. 2022;9:110–118. doi: 10.1016/j.aninu.2021.08.001. PubMed DOI PMC

Atuma C., Strugala V., Allen A., Holm L. The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;280:G922–G929. doi: 10.1152/ajpgi.2001.280.5.G922. PubMed DOI

Johansson M.E.V., Ambort D., Pelaseyed T., Schütte A., Gustafsson J.K., Ermund A., Subramani D.B., Holmén-Larsson J.M., Thomsson K.A., Bergström J.H., et al. Composition and functional role of the mucus layers in the intestine. Cell. Mol. Life Sci. 2011;68:3635–3641. doi: 10.1007/s00018-011-0822-3. PubMed DOI PMC

Linden S.K., Sutton P., Karlsson N.G., Korolik V., McGuckin M.A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1:183–197. doi: 10.1038/mi.2008.5. PubMed DOI PMC

Hollingsworth M.A., Swanson B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. 2004;4:45–60. doi: 10.1038/nrc1251. PubMed DOI

Smith A.G., O’Doherty J.V., Reilly P., Ryan M.T., Bahar B., Sweeney T. The effects of laminarin derived from Laminaria digitata on measurements of gut health: Selected bacterial populations, intestinal fermentation, mucin gene expression and cytokine gene expression in the pig. Br. J. Nutr. 2011;105:669–677. doi: 10.1017/S0007114510004277. PubMed DOI

Pieper R., Kröger S., Richter J.F., Wang J., Martin L., Bindelle J., Htoo J.K., von Smolinski D., Vahjen W., Zentek J., et al. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J. Nutr. 2012;142:661–667. doi: 10.3945/jn.111.156190. PubMed DOI

Liu P., Pieper R., Rieger J., Vahjen W., Davin R., Plendl J., Meyer W., Zentek J. Effect of dietary zinc oxide on morphological characteristics, mucin composition and gene expression in the colon of weaned piglets. PLoS ONE. 2014;9:e91091. doi: 10.1371/journal.pone.0091091. PubMed DOI PMC

Wang H., Shen J., Mu C., Gao K., Pi Y., Zhu W. Low crude protein diets supplemented with casein hydrolysate enhance the intestinal barrier function and decrease the pro-inflammatory cytokine expression in the small intestine of pigs. Anim. Nutr. 2021;7:770–778. doi: 10.1016/j.aninu.2021.03.003. PubMed DOI PMC

Luo Y., Liu Y., Li H., Zhao Y., Wright A.-D.G., Cai J., Tian G., Mao X. Differential effect of dietary fibers in intestinal health of growing pigs: Outcomes in the gut microbiota and immune-related indexes. Front. Microbiol. 2022;13:843045. doi: 10.3389/fmicb.2022.843045. PubMed DOI PMC

Tang Q., Xu E., Wang Z., Xiao M., Cao S., Hu S., Wu Q., Xiong Y., Jiang Z., Wang F., et al. Dietary Hermetia illucens larvae meal improves growth performance and intestinal barrier function of weaned pigs under the environment of enterotoxigenic Escherichia coli K88. Front. Nutr. 2022;8:8122011. doi: 10.3389/fnut.2021.812011. PubMed DOI PMC

Sudan S., Fletcher L., Zhan X., Dingle S., Patterson R., Huber L.-A., Friendship R., Kiarie E.G., Li J. Comparative efficacy of a novel Bacillus subtilis-based probiotic and pharmacological zinc oxide on growth performance and gut responses in nursery pigs. Sci. Rep. 2023;13:4659. doi: 10.1038/s41598-023-31913-0. PubMed DOI PMC

Maares M., Keil C., Straubing S., Robbe-Masselot C., Haase H. Zinc deficiency disturbs mucin expression, O-glycosylation and secretion by intestinal goblet cells. Int. J. Mol. Sci. 2020;21:6149. doi: 10.3390/ijms21176149. PubMed DOI PMC

Diao H., Yan J., Li S., Kuang S., Wei X., Zhou M., Zhang J., Huang C., He P., Tang W. Effects of dietary zinc sources on growth performance and gut health of weaned piglets. Front. Microbiol. 2021;12:771617. doi: 10.3389/fmicb.2021.771617. PubMed DOI PMC

Beukema M., Faas M.M., de Vos P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Exp. Mol. Med. 2020;52:1364–1376. doi: 10.1038/s12276-020-0449-2. PubMed DOI PMC

Kara K., Ozkaya S., Guclu B.K., Aktug E., Demir S., Yılmaz S., Pirci G., Yılmaz K., Baytok E. In vitro ruminal fermentation and nutrient compositions of potato starch by-products. J. Anim. Feed Sci. 2023;32:306–315. doi: 10.22358/jafs/162268/2023. DOI

Metzler B.U., Mosenthin R. A review of interaction between dietary fiber and the gastrointestinal microbiota and their consequences on intestinal phosphorus metabolism in growing pigs. Asian-Aust. J. Anim. Sci. 2008;21:603–615. doi: 10.5713/ajas.2008.r.03. DOI

Baye K., Guyot J.-P., Mouquet-Rivier C. The unresolved role of dietary fibers on mineral absorption. Crit. Rev. Food Sci. Nutr. 2017;57:949–957. doi: 10.1080/10408398.2014.953030. PubMed DOI

Barszcz M., Taciak M., Tuśnio A., Čobanová K., Grešáková L. The effect of organic and inorganic zinc source, used in combination with potato fiber, on growth, nutrient digestibility and biochemical blood profile in growing pigs. Livest. Sci. 2019;227:34–43. doi: 10.1016/j.livsci.2019.06.017. DOI

Barszcz M., Taciak M., Tuśnio A., Święch E., Skomiał J., Čobanová K., Grešáková L. The effect of organic and inorganic zinc source, used with lignocellulose or potato fiber, on microbiota composition, fermentation, and activity of enzymes involved in dietary fiber breakdown in the large intestine of pigs. Livest. Sci. 2021;245:104429. doi: 10.1016/j.livsci.2021.104429. DOI

de Vogel J., van-Eck W.B., Sesink A.L.A., Jonker-Termont D.S.M.L., Kleibeuker J., van der Meer R. Dietary heme injures surface epithelium resulting in hyperproliferation, inhibition of apoptosis and crypt hyperplasia in rat colon. Carcinogenesis. 2008;29:398–403. doi: 10.1093/carcin/bgm278. PubMed DOI

Kiela P.R., Ghishan F.K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 2016;30:145–159. doi: 10.1016/j.bpg.2016.02.007. PubMed DOI PMC

Ncobela C.N., Kanengoni A.T., Hlatini V.A., Thomas R.S., Chimonyo M. A review of the utility of potato by-products as a feed resource for smallholder pig production. Anim. Feed Sci. Technol. 2017;227:107–117. doi: 10.1016/j.anifeedsci.2017.02.008. DOI

Gralak M.A., Leontowicz M., Morawiec M., Bartnikowska E., Kulasek G.W. Comparison of the influence of dietary fibre sources with different proportions of soluble and insoluble fibre on Ca, Mg, Fe, Zn, Mn and Cu apparent absorption in rats. Arch. Anim. Nutr. 1996;49:293–299. doi: 10.1080/17450399609381892. PubMed DOI

McKay D.M., Baird A.W. Cytokine regulation of epithelial permeability and ion transport. Gut. 1999;44:283–289. doi: 10.1136/gut.44.2.283. PubMed DOI PMC

Taylor C.T., Murphy A., Kelleher D., Baird A.W. Changes in barrier function of a model intestinal epithelium by intraepithelial lymphocytes require new protein synthesis by epithelial cells. Gut. 1997;40:634–640. doi: 10.1136/gut.40.5.634. PubMed DOI PMC

Barszcz M., Taciak M., Skomiał J. The effects of inulin, dried Jerusalem artichoke tuber and a multispecies probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch. Anim. Nutr. 2016;70:278–292. doi: 10.1080/1745039X.2016.1184368. PubMed DOI

Barszcz M., Taciak M., Skomiał J. Influence of different inclusion levels and chain length of inulin on microbial ecology and the state of mucosal protective barrier in the large intestine of young pigs. Anim. Prod. Sci. 2018;58:1109–1118. doi: 10.1071/AN16014. DOI

Lapré J.A., De Vries H.T., Koeman J.H., Van der Meer R. The antiproliferative effect of dietary calcium on colonic epithelium is mediated by luminal surfactants and dependent on the type of dietary fat. Cancer. Res. 1993;53:784–789. PubMed

van Gorkom B.A.P., van der Meer R., Karrenbeld A., van der Sluis T., Zwart N., Termont D.S.M.L., Boersma-van Ek W., de Vries E.G.E., Kleibeuker J.H. Calcium affects biomarkers of colon carcinogenesis after right hemicolectomy. Eur. J. Clin. Investig. 2002;32:693–699. doi: 10.1046/j.1365-2362.2002.01048.x. PubMed DOI

Hughes R., Magee E.A.M., Bingham S. Protein degradation in the large intestine: Relevance to colorectal cancer. Curr. Issues Intest. Microbiol. 2000;1:51–58. PubMed

Tokarčiková K., Čobanová K., Takácsová M., Barszcz M., Taciak M., Tuśnio A., Grešaková L. Trace mineral solubility and digestibility in the small intestine of piglets are affected by zinc and fibre sources. Agriculture. 2022;12:517. doi: 10.3390/agriculture12040517. DOI

Lund E.K., Wharf S.G., Fairweather-Tait S.J., Johnson I.T. Increases in the concentrations of available iron in response to dietary iron supplementation are associated with changes in crypt cell proliferation in rat large intestine. J. Nutr. 1998;128:175–179. doi: 10.1093/jn/128.2.175. PubMed DOI

Babbs C.F. Free radicals and the etiology of colon cancer. Free Radic. Biol. Med. 1990;8:191–200. doi: 10.1016/0891-5849(90)90091-V. PubMed DOI

Gonciarz R.L., Renslo A.R. Emerging role of ferrous iron in bacterial growth and host-pathogen interaction: New tools for chemical (micro)biology and antibacterial therapy. Curr. Opin. Chem. Biol. 2021;61:170–178. doi: 10.1016/j.cbpa.2021.01.015. PubMed DOI PMC

Govers M.J., Lapré J.A., De Vries H.T., Van der Meer R. Dietary soybean protein compared with casein damages colonic epithelium and stimulates colonic epithelial proliferation in rats. J. Nutr. 1993;123:1709–1713. doi: 10.1093/jn/123.10.1709. PubMed DOI

Martínez-Puig D., Castillo M., Nofrarias M., Creus E., Pérez J.F. Long-term effects on the digestive tract of feeding large amounts of resistant starch: A study in pigs. J. Sci. Food Agric. 2007;87:1991–1999. doi: 10.1002/jsfa.2835. DOI

Nofrarías M., Martínez-Puig D., Pujols J., Majó N., Pérez J.F. Long-term intake of resistant starch improves colonic mucosal integrity and reduces gut apoptosis and blood immune cells. Nutrition. 2007;23:861–870. doi: 10.1016/j.nut.2007.08.016. PubMed DOI

Schlemmer U., Jany K.-D., Berk A., Schulz E., Rechkemmer G. Degradation of phytate in the gut of pigs—Pathway of gastrointestinal inositol phosphate hydrolysis and enzymes involved. Arch. Anim. Nutr. 2001;55:255–280. doi: 10.1080/17450390109386197. PubMed DOI

Heyer C.M.E., Weiss E., Schmucker S., Rodehutscord M., Hoelzle L.E., Mosenthin R., Stefanski V. The impact of phosphorus on the immune system and the intestinal microbiota with special focus on the pig. Nutr. Res. Rev. 2015;28:67–82. doi: 10.1017/S0954422415000049. PubMed DOI

Smirnov A., Sklan D., Uni Z. Mucin dynamics in the chick small intestine are altered by starvation. J. Nutr. 2004;134:736–742. doi: 10.1093/jn/134.4.736. PubMed DOI

Smirnov A., Perez R., Amit-Romach E., Sklan D., Uni Z. Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. J. Nutr. 2005;135:187–192. doi: 10.1093/jn/135.2.187. PubMed DOI

Almagro-Moreno S., Pruss K., Taylor R.K. Intestinal colonization dynamics of Vibrio cholerae. PLoS Pathog. 2015;11:e1004787. doi: 10.1371/journal.ppat.1004787. PubMed DOI PMC

Valeri M., Rossi Paccani S., Kasendra M., Nesta B., Serino L., Pizza M., Soriani M. Pathogenic E. coli exploits SsIE mucinase activity to translocate through the mucosal barrier and get access to host cells. PLoS ONE. 2015;10:e0117486. doi: 10.1371/journal.pone.0117486. PubMed DOI PMC

Corfield A.P. The interaction of the gut microbiota with the mucus barrier in health and disease in human. Microorganisms. 2018;6:78. doi: 10.3390/microorganisms6030078. PubMed DOI PMC

Taciak M., Barszcz M., Święch E., Tuśnio A., Bachanek I. Interactive effects of protein and carbohydrates on production of microbial metabolites in the large intestine of growing pigs. Arch. Anim. Nutr. 2017;71:192–209. doi: 10.1080/1745039X.2017.1291202. PubMed DOI

Tuśnio A., Barszcz M., Święch E., Skomiał J., Taciak M. Large intestine morphology and microflora activity in piglets fed diets with two levels of raw or micronized blue sweet lupin seeds. Livest. Sci. 2020;240:104137. doi: 10.1016/j.livsci.2020.104137. DOI

Zhou L., Fang L., Sun Y., Su Y., Zhu W. Effects of a diet high in resistant starch on fermentation end-products of protein and mucin secretion in the colons of pigs. Starke. 2017;69:1600032. doi: 10.1002/star.201600032. DOI

Kim C.H., Kim D., Ha Y., Cho K.-D., Lee B.H., Seo I.W., Kim S.-H., Chae C. Expression of mucins and trefoil factor family protein-1 in the colon of pigs naturally infected with Salmonella typhimurium. J. Comp. Path. 2009;140:38–42. doi: 10.1016/j.jcpa.2008.10.002. PubMed DOI

Jung T.-H., Park J.H., Jeon W.-M., Han K.-S. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutr. Res. Pract. 2015;9:343–349. doi: 10.4162/nrp.2015.9.4.343. PubMed DOI PMC

Burger-van Paassen N., Vincent A., Puiman P.J., van der Sluis M., Bouma J., Boehm G., van Goudoever J.B., van Seuningen I., Renes I.B. The regulation of the intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem. J. 2009;420:211–219. doi: 10.1042/BJ20082222. PubMed DOI

Willemsen L.E.M., Koetsier M.A., van Deventer S.J.H., van Tol E.A.F. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut. 2003;52:1442–1447. doi: 10.1136/gut.52.10.1442. PubMed DOI PMC

Holodova M., Cobanova K., Sefcikova Z., Barszcz M., Tuśnio A., Taciak M., Gresakova L. Dietary zinc and fibre source can influence the mineral and antioxidant status of piglets. Animals. 2019;9:497. doi: 10.3390/ani9080497. PubMed DOI PMC

AOAC . Official Methods of Analysis of AOAC International. 18th ed. AOAC; Gaithersburg, MD, USA: 2011.

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...