The effects of challenge or social buffering on cortisol, testosterone, and antler growth in captive red deer (Cervus elaphus) males
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO0723
Ministerstvo Zemědělství
MZE-RO0723
Ministerstvo Zemědělství
MZE-RO0723
Ministerstvo Zemědělství
MZE-RO0723
Ministerstvo Zemědělství
MZE-RO0723
Ministerstvo Zemědělství
MZE-RO0723
Ministerstvo Zemědělství
PubMed
38071205
PubMed Central
PMC10710442
DOI
10.1038/s41598-023-48476-9
PII: 10.1038/s41598-023-48476-9
Knihovny.cz E-zdroje
- MeSH
- hydrokortison MeSH
- parohy * MeSH
- testosteron MeSH
- vysoká zvěř * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydrokortison MeSH
- testosteron MeSH
We equipped 17 captive red deer males (Cervus elaphus) with GPS collars to measure inter-individual distances throughout the 5-months of the antler growth period. We expected some individuals to associate regularly with others while others would not. We predicted that males aggregating with others within a socially stable environment (Associates) would benefit from a form of "social buffering" and would likely have lowered cortisol (C) and testosterone (T) concentrations. Males only irregularly joining social groupings would experience elevated levels of aggression; according to the "Challenge hypothesis", their T and C concentrations should increase. Interacting with a higher proportion of Associates did indeed reduce C concentrations. Conversely, avoiding Associates and challenging other males stimulated the T secretion. Admittedly, males avoiding regular proximity to others tended to develop the largest antlers. They probably benefited from frequent successful agonistic threats to conspecifics, resulting in elevated T concentrations. Regular association with tolerant, conspecifics and "social buffering" did not seem sufficient for producing larger antlers despite reducing C concentrations. Alternative social strategies were adopted within the same group of individuals and showed how the trade-off between these strategies could have an essential impact on C and T concentrations.
Zobrazit více v PubMed
Crook JH, Ellis JE, Gosscustard JD. Mammalian social-systems - structure and function. Anim. Behav. 1976;24:261–274. doi: 10.1016/s0003-3472(76)80035-8. DOI
Sachser N, Dürschlag M, Hirzel D. Social relationships and the management of stress. Psychoneuroendocrino. 1998;23:891–904. doi: 10.1016/s0306-4530(98)00059-6. PubMed DOI
Bartoš L, Bubenik GA, Kužmová E. Endocrine relationships between rank-related behavior and antler growth in deer. Front. Biosci. Elite Ed. 2012;4:1111–1126. doi: 10.2741/e445. PubMed DOI
Bartoš L, Schams D, Bubenik GA. Testosterone, but not IGF-1, LH, prolactin or cortisol, may serve as antler-stimulating hormone in red deer stags (Cervus elaphus) Bone. 2009;44:691–698. doi: 10.1016/j.bone.2008.12.004. PubMed DOI
Bartoš L, et al. Cyproterone acetate reduced antler growth in surgically castrated fallow deer. J. Endocrinol. 2000;164:87–95. doi: 10.1677/joe.0.1640087. PubMed DOI
Bartoš L, Perner V. Integrity of a red deer stag social group during velvet period, association of individuals, and timing of antler cleaning. Behaviour. 1985;95:314–323. doi: 10.1163/156853985X00172. DOI
Appleby MC. Competition in a red deer stags social group - rank, age and relatedness of opponents. Anim. Behav. 1983;31:913–918. doi: 10.1016/S0003-3472(83)80246-2. DOI
Bartoš L. The date of antler casting, age and social hierarchy relationships in the red deer stag. Behav. Process. 1980;5:293–301. doi: 10.1016/0376-6357(80)90013-3. PubMed DOI
Bartoš L, Perner V, Procházka B. On relationship between social rank during the velvet period and antler parameters in a growing red deer stag. Acta Theriol. 1987;32:403–412. doi: 10.4098/AT.arch.87-28. DOI
Bartoš L, Losos S. Response of antler growth to changing rank of fallow deer buck during the velvet period. Can. J. Zool. 1997;75:1934–1939. doi: 10.1139/z97-823. DOI
Kruuk LEB, et al. Antler size in red deer: Heritability and selection but no evolution. Evolution. 2002;56:1683–1695. PubMed
Bartoš L, Perner V. Distribution of mating across season and reproductive success according to dominance in male red deer. Folia Zool. 1998;47:7–12.
Rose RM, Bernstein IS, Gordon TP. Consequence of social conflict on plasma testosterone levels in rhesus monkeys. Psychosom. Med. 1975;37:50–61. doi: 10.1097/00006842-197501000-00006. PubMed DOI
Tamashiro KLK, Nguyen MMN, Sakai RR. Social stress: From rodents to primates. Front. Neuroendocrin. 2005;26:27–40. doi: 10.1016/j.yfrne.2005.03.001. PubMed DOI
Bartoš L, Schams D, Bubenik GA, Kotrba R, Tománek M. Relationship between rank and plasma testosterone and cortisol in red deer males (Cervus elaphus) Physiol. Behav. 2010;101:628–634. doi: 10.1016/j.physbeh.2010.09.011. PubMed DOI
Hirschenhauser K, Oliveira RF. Social modulation of androgens in male vertebrates: meta-analyses of the challenge hypothesis. Anim. Behav. 2006;71:265–277. doi: 10.1016/j.anbehav.2005.04.014. DOI
Sapolsky RM. The influence of social hierarchy on primate health. Science. 2005;308:648–652. doi: 10.1126/science.1106477. PubMed DOI
Adkins-Regan E. Hormones and Animal Social Behavior. London: Princeton University Press; 2005.
Koolhaas JM, et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 2011;35:1291–1301. doi: 10.1016/j.neubiorev.2011.02.003. PubMed DOI
Johnson EO, Kamilaris TC, Chrousos GP, Gold PW. Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neurosci. Biobehav. Rev. 1992;16:115–130. doi: 10.1016/S0149-7634(05)80175-7. PubMed DOI
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000;21:55–89. doi: 10.1210/er.21.1.55. PubMed DOI
Casto KV, Edwards DA. Testosterone, cortisol, and human competition. Horm. Behav. 2016;82:21–37. doi: 10.1016/j.yhbeh.2016.04.004. PubMed DOI
Toufexis D, Rivarola MA, Lara H, Viau V. Stress and the reproductive axis. J. Neuroendocrinol. 2014;26:573–586. doi: 10.1111/jne.12179. PubMed DOI PMC
Feng XL, et al. Social correlates of the dominance rank and long-term cortisol levels in adolescent and adult male rhesus macaques (Macaca mulatta) Sci. Rep. 2016;6:25431. doi: 10.1038/srep25431. PubMed DOI PMC
Mendonca-Furtado O, et al. Does hierarchy stability influence testosterone and cortisol levels of bearded capuchin monkeys (Sapajus libidinosus) adult males? A comparison between two wild groups. Behav. Process. 2014;109:79–88. doi: 10.1016/j.beproc.2014.09.010. PubMed DOI
Ostner J, Heistermann M, Schulke O. Dominance, aggression and physiological stress in wild male Assamese macaques (Macaca assamensis) Horm. Behav. 2008;54:613–619. doi: 10.1016/j.yhbeh.2008.05.020. PubMed DOI
Zimmermann TD, Kaiser S, Sachser N. The adaptiveness of a queuing strategy shaped by social experiences during adolescence. Physiol. Behav. 2017;181:29–37. doi: 10.1016/j.physbeh.2017.08.025. PubMed DOI
Cohen S, Wills TA. Stress, social support, and the buffering hypothesis. Psychol. Bull. 1985;98:310–357. doi: 10.1037//0033-2909.98.2.310. PubMed DOI
Kiyokawa Y, Hennessy MB. Comparative studies of social buffering: A consideration of approaches, terminology, and pitfalls. Neurosci. Biobehav. Rev. 2018;86:131–141. doi: 10.1016/j.neubiorev.2017.12.005. PubMed DOI PMC
Hennessy MB, Kaiser S, Sachser N. Social buffering of the stress response: Diversity, mechanisms, and functions. Front. Neuroendocrinol. 2009;30:470–482. doi: 10.1016/j.yfrne.2009.06.001. PubMed DOI
Hostinar CE, Sullivan RM, Gunnar MR. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development. Psychol. Bull. 2014;140:256–282. doi: 10.1037/a0032671. PubMed DOI PMC
Vila J. Social support and longevity: Meta-analysis-based evidence and psychobiological mechanisms. Front. Psychol. 2021;12:17. doi: 10.3389/fpsyg.2021.717164. PubMed DOI PMC
Young C, Majolo B, Heistermann M, Schülke O, Ostner J. Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. P. Natl. Acad. Sci. U. S. A. 2014;111:18195–18200. doi: 10.1073/pnas.1411450111. PubMed DOI PMC
Taylor, S. E. & Master, S. Social responses to stress: The tend-and-befriend model In
Kirschbaum C, et al. Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy-men. Psychosom. Med. 1995;57:468–474. doi: 10.1097/00006842-199509000-00009. PubMed DOI
Adrian O, et al. Female influences on pair formation, reproduction and male stress responses in a monogamous cavy (Galea monasteriensis) Horm. Behav. 2008;53:403–412. doi: 10.1016/j.yhbeh.2007.11.009. PubMed DOI
Ostner J, Schülke O. The evolution of social bonds in primate males. Behaviour. 2014;151:871–906. doi: 10.1163/1568539x-00003191. DOI
Gilby IC, et al. Fitness benefits of coalitionary aggression in male chimpanzees. Behav. Ecol. Sociobiol. 2013;67:373–381. doi: 10.1007/s00265-012-1457-6. PubMed DOI PMC
Goodall J. The Chimpanzees of Gombe: Patterns of Behavior. The Belknap Press of Harvard University Press; 1986.
De Waal, F.
Seyfarth, R. M. & Cheney, D. L. The evolutionary origins of friendship In PubMed
Feh C. Alliances and reproductive success in Camargue stallions. Anim. Behav. 1999;57:705–713. doi: 10.1006/anbe.1998.1009. PubMed DOI
Bartoš L. Dominance and aggression in various sized groups of red deer stags. Aggr. Behav. 1986;12:175–182. doi: 10.1002/1098-2337(1986)12:3<175::AID-AB2480120304>3.0.CO;2-Z. DOI
Wingfield JC, Hegner RE, Dufty AM, Ball GF. The challenge hypothesis—Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am. Nat. 1990;136:829–846. doi: 10.1086/285134. DOI
Wingfield JC, Farner DS. Endocrinology of a natural breeding population of white-crowned sparrow (Zonotrichia leucophrys pugetensis) Physiol. Zool. 1978;51:188–205. doi: 10.1086/physzool.51.2.30157866. DOI
Ball GF, Balthazart J. The neuroendocrine integration of environmental information, the regulation and action of testosterone and the challenge hypothesis. Horm. Behav. 2020;123:9. doi: 10.1016/j.yhbeh.2019.104574. PubMed DOI
Wingfield JC, Goymann W, Jalabert C, Soma KK. Reprint of "Concepts derived from the challenge hypothesis". Horm. Behav. 2020;123:8. doi: 10.1016/j.yhbeh.2020.104802. PubMed DOI
Moore IT, Hernandez J, Goymann W. Who rises to the challenge? Testing the challenge hypothesis in fish, amphibians, reptiles, and mammals. Horm. Behav. 2020;123:6. doi: 10.1016/j.yhbeh.2019.06.001. PubMed DOI
Esattore B, et al. To beat or not to beat: Behavioral plasticity during the antler growth period affects cortisol but not testosterone concentrations in red deer (Cervus elaphus) males. General Comp. Endocrinol. 2020 doi: 10.1016/j.ygcen.2020.113552. PubMed DOI
Monestier C, et al. Individual variation in an acute stress response reflects divergent coping strategies in a large herbivore. Behav. Process. 2016;132:22–28. doi: 10.1016/j.beproc.2016.09.004. PubMed DOI
Found R, St Clair CC. Ambidextrous ungulates have more flexible behaviour, bolder personalities and migrate less. Roy. Soc. Open Sci. 2017;4:11. doi: 10.1098/rsos.160958. PubMed DOI PMC
Kikusui T, Winslow JT, Mori Y. Social buffering: relief from stress and anxiety. Philos. Trans. R. Soc. B. 2006;361:2215–2228. doi: 10.1098/rstb.2006.1941. PubMed DOI PMC
McNeal N, et al. The protective effects of social bonding on behavioral and pituitary-adrenal axis reactivity to chronic mild stress in prairie voles. Stress. 2017;20:175–182. doi: 10.1080/10253890.2017.1295444. PubMed DOI PMC
Bell AM. Individual variation and the challenge hypothesis. Horm. Behav. 2020;123:6. doi: 10.1016/j.yhbeh.2019.06.013. PubMed DOI PMC
Bartoš L, Bubenik GA. Relationships between rank-related behaviour, antler cycle timing and antler growth in deer: behavioural aspects. Anim. Prod. Sci. 2011;51:303–310. doi: 10.1071/AN10195. DOI
Bartoš L, Bahbouh R, Vach M. Repeatability of size and fluctuating asymmetry of antler characteristics in red deer (Cervus elaphus) during ontogeny. Biol. J. Linn. Soc. 2007;91:215–226. doi: 10.1111/j.1095-8312.2007.00789.x. DOI
de Jong JF, et al. Fragmentation and translocation distort the genetic landscape of ungulates: Red deer in the Netherlands. Front. Ecol. Evol. 2020;8:535715. doi: 10.3389/fevo.2020.535715. DOI
Wingfield JC. The challenge hypothesis: Where it began and relevance to humans. Horm. Behav. 2017;92:9–12. doi: 10.1016/j.yhbeh.2016.11.008. PubMed DOI
Bartoš L. Reproductive and social aspects of the behaviour of 'white' red deer. Saugetierknd. Mitteilung. 1982;30:89–117.
Bartoš L, Bahbouh R. Antler size and fluctuating asymmetry in red deer (Cervus elaphus) stags and probability to become a harem holder in rut. Biol. J. Linn. Soc. 2006;87:59–68. doi: 10.1111/j.1095-8312.2006.00555.x. DOI
Bubenik, A. B. Proposal for standardized nomenclature for bony appendices in Pecora in
Kononov SU, et al. Dietary L-carnitine affects leukocyte count and function in dairy cows around parturition. Front. Immunol. 2022;13:17. doi: 10.3389/fimmu.2022.784046. PubMed DOI PMC
Meyer J, et al. Dietary l-carnitine supplementation modifies the lipopolysaccharide-induced acute phase reaction in dairy cows. Animals. 2021;11:23. doi: 10.3390/ani11010136. PubMed DOI PMC
Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2. Springer-Verlag; 2002.
Christensen, W. Model selection using information criteria (Made easy in SAS®).
Tao J, Littell R, Patetta M, Truxillo C, Wolfinger R. Mixed Model Analyses using the SAS System Course Notes. SAS Institute Inc; 2002.
Johnson M, Waller J. Simple methods for repeatability and comparability: Bland-Altman plots, bias, and measurement error. SAS Global Forum. 2018;1:1–11.
Lin LI-K. A concordance correlation-coefficient to evaluate reproducibility. Biometrics. 1989;45:255–268. doi: 10.2307/2532051. PubMed DOI
Looney, S. W. A SAS® macro for improved correlation coefficient inference In