Soaring over open waters: horizontal winds provide lift to soaring migrants in weak thermal conditions

. 2023 Dec 09 ; 11 (1) : 76. [epub] 20231209

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38071360

Grantová podpora
2023ITA31 ITA 2023 VETUNI Brno
TED2021-130890B-C21 European Union NextGenerationEU/PRTR
RYC2019-027216-I MCIN/AEI/10.13039/501100011033
101086387 HORIZONMSCA-2021-SE-0

Odkazy

PubMed 38071360
PubMed Central PMC10710700
DOI 10.1186/s40462-023-00438-6
PII: 10.1186/s40462-023-00438-6
Knihovny.cz E-zdroje

BACKGROUND: For soaring birds, the ability to benefit from variable airflow dynamics is crucial, especially while crossing natural barriers such as vast water bodies during migration. Soaring birds also take advantage of warm rising air, so-called thermals, that allow birds to ascend passively to higher altitudes with reduced energy costs. Although it is well known that soaring migrants generally benefit from supportive winds and thermals, the potential of uplifts and other weather factors enabling soaring behavior remains unsolved. METHODS: In this study, we GPS-tracked 19 Red Kites, Milvus milvus, from the Central European population that crossed the Adriatic Sea on their autumn migration. Migratory tracks were annotated with weather data (wind support, side wind, temperature difference between air and surface-proxy for thermal uplift, cloud cover, and precipitation) to assess their effect on Red Kites' decisions and soaring performance along their migration across the Adriatic Sea and land. RESULTS: Wind support affected the timing of crossing over the Adriatic Sea. We found that temperature differences and horizontal winds positively affected soaring sea movement by providing lift support in otherwise weak thermals. Furthermore, we found that the soaring patterns of tracked raptors were affected by the strength and direction of prevailing winds. CONCLUSION: Thanks to modern GPS-GSM telemetry devices and available data from online databases, we explored the effect of different weather variables on the occurrence of soaring behavior and soaring patterns of migratory raptors. We revealed how wind affected the soaring pattern and that tracked birds could soar in weak thermals by utilizing horizontal winds, thus reducing energy costs of active flapping flight over vast water bodies.

Zobrazit více v PubMed

Literák I, Škrábal J, Karyakin IV, Andreyenkova NG, Vazhov SV. Black Kites on a flyway between Western Siberia and the Indian Subcontinent. Sci Rep. 2022;12:5581. doi: 10.1038/s41598-022-09246-1. PubMed DOI PMC

Sergio F, Barbosa JM, Tanferna A, Silva R, Blas J, Hiraldo F. Compensation for wind drift during raptor migration improves with age through mortality selection. Nat Ecol Evol. 2022;6:989–997. doi: 10.1038/s41559-022-01776-1. PubMed DOI

Vansteelant WMG, Shamoun-Baranes J, van Manen W, van Diermen J, Bouten W. Seasonal detours by soaring migrants shaped by wind regimes along the East Atlantic Flyway. J Anim Ecol. 2017;86:179–191. doi: 10.1111/1365-2656.12593. PubMed DOI

Nourani E, Safi K, Yamaguchi NM, Higuchi H. Raptor migration in an oceanic flyway: wind and geography shape the migratory route of grey-faced buzzards in East Asia. R Soc Open Sci. 2018;5:171555. doi: 10.1098/rsos.171555. PubMed DOI PMC

Bohrer G, Brandes D, Mandel JT, Bildstein KL, Miller TA, Lanzone M, et al. Estimating updraft velocity components over large spatial scales: contrasting migration strategies of golden eagles and turkey vultures: contrasting migration strategies of two raptors. Ecol Lett. 2012;15:96–103. doi: 10.1111/j.1461-0248.2011.01713.x. PubMed DOI

Liechti F. Birds: blowin’ by the wind? J Ornithol. 2006;147:202–211. doi: 10.1007/s10336-006-0061-9. DOI

Becciu P, Panuccio M, Catoni C, Dell’Omo G, Sapir N. Contrasting aspects of tailwinds and asymmetrical response to crosswinds in soaring migrants. Behav Ecol Sociobiol. 2018;72:28. doi: 10.1007/s00265-018-2447-0. DOI

Santos CD, Hanssemn F, Muñoz AR, Onrubia A, Wikelski M, May R, et al. Match between soaring modes of black kites and the fine-scale distribution of updrafts. Sci Rep. 2017;7:6421. doi: 10.1038/s41598-017-05319-8. PubMed DOI PMC

Williams HJ, Shepard ELC, Holton MD, Alarcón PAE, Wilson RP, Lambertucci SA. Physical limits of flight performance in the heaviest soaring bird. Proc Natl Acad Sci. 2020;117:17884–17890. doi: 10.1073/pnas.1907360117. PubMed DOI PMC

Mellone U. Sea crossing as a major determinant for the evolution of migratory strategies in soaring birds. J Anim Ecol. 2020;89:1298–1301. doi: 10.1111/1365-2656.13241. PubMed DOI

Liu WT, Tang W, Xie X. Wind power distribution over the ocean. Geophys Res Lett. 2008;35:L13808. doi: 10.1029/2008GL034172. DOI

Newton I. The migration ecology of birds. London: Academic Press; 2008.

Nourani E, Bohrer G, Becciu P, Bierregaard RO, Duriez O, Figuerola J, et al. The interplay of wind and uplift facilitates over-water flight in facultative soaring birds. Proc R Soc B Biol Sci. 2021;288:20211603. doi: 10.1098/rspb.2021.1603. PubMed DOI PMC

Pilot’s handbook of aeronautical knowledge 2016. Oklahoma City, OK: United States Department of Transportation, Federal Aviation Administration, Airman Testing Standards Branch; 2016.

Mohamed A, Taylor GK, Watkins S, Windsor SP. Opportunistic soaring by birds suggests new opportunities for atmospheric energy harvesting by flying robots. J R Soc Interface. 2022;19:20220671. doi: 10.1098/rsif.2022.0671. PubMed DOI PMC

Becciu P, Rotics S, Horvitz N, Kaatz M, Fiedler W, Zurell D, et al. Causes and consequences of facultative sea crossing in a soaring migrant. Funct Ecol. 2020;34:840–852. doi: 10.1111/1365-2435.13539. DOI

Mellone U, Limiñana R, Mallia E, Urios V. Extremely detoured migration in an inexperienced bird: interplay of transport costs and social interactions. J Avian Biol. 2011;42:468–472. doi: 10.1111/j.1600-048X.2011.05454.x. DOI

Duriez O, Peron G, Gremillet D, Sforzi A, Monti F. Migrating ospreys use thermal uplift over the open sea. Biol Lett. 2018;14:20180687. doi: 10.1098/rsbl.2018.0687. PubMed DOI PMC

Nourani E, Yamaguchi NM, Manda A, Higuchi H. Wind conditions facilitate the seasonal water-crossing behaviour of Oriental Honey-buzzards Pernis ptilorhynchus over the East China Sea. Ibis. 2016;158:506–518. doi: 10.1111/ibi.12383. DOI

Santos CD, Silva JP, Muñoz AR, Onrubia A, Wikelski M. The gateway to Africa: What determines sea crossing performance of a migratory soaring birds at the Strait of Gibraltar. J Anim Ecol. 2020;89:1317–1328. doi: 10.1111/1365-2656.13201. PubMed DOI

Literák I, Raab R, Škrábal J, Vyhnal S, Dostál M, et al. Dispersal and philopatry in Central European Red Kites Milvus milvus. J. Ornithol. 2022;163:469–479. doi: 10.1007/s10336-021-01950-5. DOI

Signell RP, Chiggiato J, Horstmann J, Doyle JD, Pullen J, Askari F. High-resolution mapping of Bora winds in the northern Adriatic Sea using synthetic aperture radar. J Geophys Res. 2010;115:C04020.

Schmaljohann H, Liechti F. Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds. J Exp Biol. 2009;212:3633–3642. doi: 10.1242/jeb.031435. PubMed DOI

Kranstauber B, Weinzierl R, Wikelski M, Safi K. Global aerial flyways allow efficient travelling. Ecol Lett. 2015;18:1338–1345. doi: 10.1111/ele.12528. PubMed DOI

Phillips RA, Xavier JC, Croxall JP. Effects of satellite transmitters on albatrosses and petrels. Auk. 2003;120:1082. doi: 10.1642/0004-8038(2003)120[1082:EOSTOA]2.0.CO;2. DOI

Puehringer-Sturmayr V, Loretto MCA, Hemetsberger J, Czerny T, Gschwandegger J, Leitsberger M, et al. Effects of bio-loggers on behaviour and corticosterone metabolites of Northern Bald Ibises (Geronticus eremita) in the field and in captivity. Anim Biotelemetry. 2020;8:2. doi: 10.1186/s40317-019-0191-5. DOI

Škrábal J, Literák I, Raab R. 2023. Study "Milvus_milvus_Soaring_over_Adriatic_sea". Movebank Data Repository. 10.5441/001/1.300.

Williams HJ, Holton MD, Shepard ELC, Largey N, Norman B, Ryan PG, et al. Identification of animal movement patterns using tri-axial magnetometry. Mov Ecol. 2017;5:6. doi: 10.1186/s40462-017-0097-x. PubMed DOI PMC

Vansteelant WMG, Shamoun-Baranes J, McLaren J, van Diermen J, Bouten W. Soaring across continents: decision-making of a soaring migrant under changing atmospheric conditions along an entire flyway. J Avian Biol. 2017;48:887–896. doi: 10.1111/jav.01298. DOI

Dodge S, Bohrer G, Weinzierl R, Davidson SC, Kays R, Douglas D, et al. The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data. Mov Ecol. 2013;1:3. doi: 10.1186/2051-3933-1-3. PubMed DOI PMC

Kemp MU, Emiel van Loon E, Shamoun-Baranes J, Bouten W. RNCEP: global weather and climate data at your fingertips: RNCEP. Methods Ecol Evol. 2012;3:65–70. doi: 10.1111/j.2041-210X.2011.00138.x. DOI

Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Bartón K. MuMIn: Multi-Model Inference. R package version 1.43.17. 2020. Available from: https://CRAN.R-project.org/package=MuMIn

Lüdecke D, Ben-Shachar M, Patil I, Waggoner P, Makowski D. performance: an R package for assessment, comparison and testing of statistical models. J Open Source Softw. 2021;6:3139. doi: 10.21105/joss.03139. DOI

Mitchell GW, Woodworth BK, Taylor PD, Norris DR. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov Ecol. 2015;3:19. doi: 10.1186/s40462-015-0046-5. PubMed DOI PMC

Weinzierl R, Bohrer G, Kranstauber B, Fiedler W, Wikelski M, Flack A. Wind estimation based on thermal soaring of birds. Ecol Evol. 2016;6:8706–8718. doi: 10.1002/ece3.2585. PubMed DOI PMC

Sage E, Bouten W, van Dijk W, Camphuysen KCJ, Shamoun-Baranes J. Built up areas in a wet landscape are stepping stones for soaring flight in a seabird. Sci Total Environ. 2022;852:157879. doi: 10.1016/j.scitotenv.2022.157879. PubMed DOI

Ajanic E, Feroskhan M, Wüest V, Floreano D. Sharp turning maneuvers with avian-inspired wing and tail morphing. Commun Eng. 2022;1:34. doi: 10.1038/s44172-022-00035-2. DOI

Mallon JM, Bildstein KL, Katzner TE. In-flight turbulence benefits soaring birds. Auk. 2016;133:79–85. doi: 10.1642/AUK-15-114.1. DOI

Richardson PL, Wakefield ED, Phillips RA. Flight speed and performance of the wandering albatross with respect to wind. Mov Ecol. 2018;6:3. doi: 10.1186/s40462-018-0121-9. PubMed DOI PMC

Klaassen RHG, Hake M, Strandberg R, Alerstam T. Geographical and temporal flexibility in the response to crosswinds by migrating raptors. Proc R Soc B Biol Sci. 2011;278:1339–1346. doi: 10.1098/rspb.2010.2106. PubMed DOI PMC

Åkesson S, Hedenström A. Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol. 2000;47:140–144. doi: 10.1007/s002650050004. DOI

Harel R, Horvitz N, Nathan R. Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci Rep. 2016;6:27865. doi: 10.1038/srep27865. PubMed DOI PMC

Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 20: updated guidelines for reporting animal research. PLOS Biol. 2020;18:e3000410. doi: 10.1371/journal.pbio.3000410. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...