Hill-Chao numbers allow decomposing gamma multifunctionality into alpha and beta components

. 2024 Jan ; 27 (1) : e14336. [epub] 20231210

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38073071

Grantová podpora
459717468 Deutsche Forschungsgemeinschaft

Biodiversity-ecosystem functioning (BEF) research has provided strong evidence and mechanistic underpinnings to support positive effects of biodiversity on ecosystem functioning, from single to multiple functions. This research has provided knowledge gained mainly at the local alpha scale (i.e. within ecosystems), but the increasing homogenization of landscapes in the Anthropocene has raised the potential that declining biodiversity at the beta (across ecosystems) and gamma scales is likely to also impact ecosystem functioning. Drawing on biodiversity theory, we propose a new statistical framework based on Hill-Chao numbers. The framework allows decomposition of multifunctionality at gamma scales into alpha and beta components, a critical but hitherto missing tool in BEF research; it also allows weighting of individual ecosystem functions. Through the proposed decomposition, new BEF results for beta and gamma scales are discovered. Our novel approach is applicable across ecosystems and connects local- and landscape-scale BEF assessments from experiments to natural settings.

Bavarian Forest National Park Grafenau Germany

Biological Sciences University of Toronto Scarborough Toronto Ontario Canada

Czech Academy of Sciences Biology Centre Institute of Entomology České Budějovice Czech Republic

Department for Spatial Structures and Digitization of Forests University of Göttingen Göttingen Germany

Department of Agronomy National Taiwan University Taipei Taiwan

Department of Animal Ecology 1 Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany

Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany

Ecology of Fungi Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany

Epidemiology Biostatistics and Prevention Institute University of Zurich Zurich Switzerland

Faculty of Biological Sciences Institute for Ecology Evolution and Diversity Conservation Biology Goethe University Frankfurt Frankfurt am Main Germany

Field Station Fabrikschleichach Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Rauhenebrach Germany

Geobotany Faculty of Biology University of Freiburg Freiburg Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Hessian Agency for Nature Conservation Environment and Geology Biodiversity Center Gießen Germany

Institute of Biology Leipzig University Leipzig Germany

Institute of Ecology Leuphana University Lüneburg Lüneburg Germany

Institute of General Ecology and Environmental Protection Technische Universität Dresden Tharandt Germany

Institute of Statistics National Tsing Hua University Hsin Chu Taiwan

Plant Ecology and Nature Conservation Group Wageningen University and Research Wageningen The Netherlands

Research Center for Advanced Science and Technology The University of Tokyo Tokyo Japan

Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany

Zobrazit více v PubMed

Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Blüthgen, N. et al. (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834-843.

Baeten, L., Verheyen, K., Wirth, C., Bruelheide, H., Bussotti, F., Finér, L. et al. (2013) A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 15, 281-291.

Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48.

Beaumelle, L., De Laender, F. & Eisenhauer, N. (2020) Biodiversity mediates the effects of stressors but not nutrients on litter decomposition. eLife, 9, e55659.

Blowes, S.A., Supp, S.R., Antão, L.H., Bates, A., Bruelheide, H., Chase, J.M. et al. (2019) The geography of biodiversity change in marine and terrestrial assemblages. Science, 366, 339-345. Available from: https://doi.org/10.1126/science.aaw1620

Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N., Hector, A. et al. (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124.

Byrnes, J.E.K., Roger, F. & Bagchi, R. (2023) Understandable multifunctionality measures using Hill numbers. Oikos, 2023, e09402. Available from: https://doi.org/10.1111/oik.09402

Chao, A. & Chiu, C.-H. (2016) Bridging the variance and diversity decomposition approaches to beta diversity via similarity and differentiation measures. Methods in Ecology and Evolution, 7, 919-928.

Chao, A., Chiu, C.-H. & Jost, L. (2014) Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity/differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45, 297-324.

Chao, A., Chiu, C.-H., Villéger, S., Sun, I.-F., Thorn, S., Lin, Y.-C. et al. (2019) An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecological Monographs, 89, e01343.

Chao, A., Chiu, C.-H., Wu, S.-H., Huang, C.L. & Lin, Y.-C. (2019) Comparing two classes of alpha diversities and their corresponding beta and (dis)similarity measures, with an application to the Formosan sika deer Cervus nippon taiouanus reintroduction programme. Methods in Ecology and Evolution, 10, 1286-1297.

Chao, A., Henderson, P.A., Chiu, C.H., Moyes, F., Hu, K.H., Dornelas, M. et al. (2021) Measuring temporal change in alpha diversity: a framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization. Methods in Ecology and Evolution, 12, 1926-1940.

Dee, L.E., Ferraro, P.J., Severen, C.N., Kimmel, K.A., Borer, E.T., Byrnes, J.E.K. et al. (2023) Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nature Communications, 14, 2607.

Dooley, Á., Isbell, F., Kirwan, L., Connolly, J., Finn, J.A. & Brophy, C. (2015) Testing the effects of diversity on ecosystem multifunctionality using a multivariate model. Ecology Letters, 18, 1242-1251.

Dornelas, M., Gotelli, N.J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C. et al. (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296-299.

Eisenhauer, N., Schielzeth, H., Barnes, A.D., Barry, K., Bonn, A., Brose, U. et al. (2019) A multitrophic perspective on biodiversity-ecosystem functioning research. Advances in Ecological Research, 61, 1-54.

Ellison, A.M. (2010) Partitioning diversity. Ecology, 91, 1962-1963.

Gamfeldt, L., Hillebrand, H. & Jonsso, P.R. (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.

Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P. et al. (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. Available from: https://doi.org/10.1038/ncomms2328

Gonzalez, A., Germain, R.M., Srivastava, D.S., Filotas, E., Dee, L.E., Gravel, D. et al. (2020) Scaling-up biodiversity-ecosystem functioning research. Ecology Letters, 23, 757-776. Available from: https://doi.org/10.1111/ele.13456

Gossner, M.M., Lewinsohn, T.M., Kahl, T., Grassein, F., Boch, S., Prati, D. et al. (2016) Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 540, 266-269. Available from: https://doi.org/10.1038/nature20575

Hautier, Y., Zhang, P., Loreau, M., Wilcox, K.R., Seabloom, E.W., Bore, E.T. et al. (2020) General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 11, 5375.

Hector, A. & Bagchi, R. (2007) Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.

Hill, M. (1973) Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427-432.

Jucker, T., Avăcăriței, D., Bărnoaiea, I., Duduman, G., Bouriaud, O. & Coomes, D.A. (2016) Climate modulates the effects of tree diversity on forest productivity. Journal of Ecology, 104, 388-398.

Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. (2017) lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82, 1-26.

Lefcheck, J.S., Byrnes, J.E.K., Isbell, F., Gamfeldt, L., Griffin, J.N., Eisenhauer, N. et al. (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 6936.

Legendre, P. & De Cáceres, M. (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters, 16, 951-963.

Loreau, M., Mouquet, N. & Holt, R.D. (2003) Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters, 6, 673-679.

Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M. et al. (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218.

Magurran, A.E., Deacon, A.E., Faye Moyes, F., Shimadzua, H., Dornelas, M., Phillip, D.A.T. et al. (2018) Divergent biodiversity change within ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 1843-1847.

Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G. et al. (2018) Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2, 427-436.

McGill, B.J., Dornelas, M., Gotelli, N.J. & Magurran, A.E. (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology & Evolution, 30, 104-113.

Meyer, S.T., Ptacnik, R., Hillebrand, H., Bessler, H., Buchmann, N., Ebeling, A. et al. (2018) Biodiversity-multifunctionality relationships depend on identity and number of measured functions. Nature Ecology & Evolution, 2, 44-49.

Mori, A.S., Isbell, F. & Cadotte, M.W. (2023) Assessing the importance of species and their assemblages for the biodiversity-ecosystem multifunctionality relationship. Ecology, 104, e4104.

Mori, A.S., Isbell, F., Fujii, S., Makoto, K., Matsuoka, S. & Osono, T. (2016) Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecology Letters, 19, 249-259.

Mori, A.S., Isbell, F. & Seidl, R. (2018) β-diversity, community assembly, and ecosystem functioning. Trends in Ecology & Evolution, 33, 549-564.

Müller, J., Mitesser, O., Cadotte, M.W., van der Plas, F., Mori, A., Ammer, C. et al. (2023) Enhancing the structural diversity between forest patches-a concept and real-world experiment to study biodiversity and multifunctionality across spatial scales. Global Change Biology, 29, 1437-1450. Available from: https://doi.org/10.1111/gcb.16564

Muthukrishnan, R. & Larkin, D.J. (2020) Invasive species and biotic homogenization in temperate aquatic plant communities. Global Ecology and Biogeography, 29, 656-667.

Olden, J.D., LeRoy Poff, N., Douglas, M.R., Douglas, M.E. & Fausch, K.D. (2004) Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution, 19, 18-24.

Ratcliffe, S., Wirth, C., van der Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K. et al. (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414-1426. Available from: https://doi.org/10.1111/ele.12849

Scherer-Lorenzen, M., Allan, E., Ampoorter, E., Avacaritiei, D., Baeten, L., Barnoaiea, I. et al. (2023) The functional significance of tree species diversity in European forests-the FunDivEUROPE dataset [dataset]. Dryad Digital Repository. Available from: https://doi.org/10.5061/dryad.9ghx3ffpz

van der Plas, F., Allan, E., Fischer, M., Alt, F., Arndt, H., Binkenstein, J. et al. (2019) Towards the development of general rules describing landscape heterogeneity-multifunctionality relationships. Journal of Applied Ecology, 56, 168-179.

van der Plas, F., Hennecke, J., Chase, J.M., van Ruijven, J. & Barry, K.E. (2023) Universal beta-diversity-functioning relationships are neither observed nor expected. Trends in Ecology & Evolution, 38, 532-538.

van der Plas, F., Manning, P., Soliveres, S., Allan, E., Scherer-Lorenzen, M., Verheyen, K. et al. (2016) Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 113, E3557-E3562.

Whittaker, R.H. (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30, 279-338.

Whittaker, R.H. (1972) Evolution and measurement of species diversity. Taxon, 12, 213-251.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...