• This record comes from PubMed

Matching Low Viscosity with Enhanced Conductivity in Vat Photopolymerization 3D Printing: Disparity in the Electric and Rheological Percolation Thresholds of Carbon-Based Nanofillers Is Controlled by the Matrix Type and Filler Dispersion

. 2023 Dec 05 ; 8 (48) : 45566-45577. [epub] 20231125

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

This study investigated the impact of carbonaceous fillers (carbon black, multiwalled carbon nanotubes, graphene, and highly defective graphene) on aromatic and nonaromatic photopolymer resins' properties, such as viscosity, long-term stability, complex permittivity, curing efficiency, final conversion, storage modulus, heat deflection and glass transition temperatures, network density, and DC resistivity. The presented results also highlight challenges that must be addressed in designing and processing carbonaceous filler-based 3D-printed photopolymer resins. The improved dielectric and electrical properties were closely tied to the dispersion quality and filler-matrix affinity. It favored the enhanced dispersion of anisotropic fillers (nanotubes) in a compatible matrix above their percolation threshold. On the other hand, the dispersed filler worsens printability due to the elevated viscosity and deteriorated penetration depth. Nonetheless, electrical and rheological percolation was found at different filler concentrations. This window of despaired percolation combines highly enhanced conductivity with only mildly increased viscosity and good printability.

See more in PubMed

Taormina G.; Sciancalepore C.; Messori M.; Bondioli F. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. J. Appl. Biomater. Funct. Mater. 2018, 16, 151–160. 10.1177/2280800018764770. PubMed DOI

Bailey E. J.; Winey K. I. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog. Polym. Sci. 2020, 105, 101242.10.1016/j.progpolymsci.2020.101242. DOI

Manapat J. Z.; Chen Q.; Ye P.; Advincula R. C. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol. Mater. Eng. 2017, 302, 1600553.10.1002/mame.201600553. DOI

Mu Q.; Wang L.; Dunn C. K.; Kuang X.; Duan F.; Zhang Z.; Qi H. J.; Wang T. Digital light processing 3D printing of conductive complex structures. Addit. Manuf. 2017, 18, 74–83. 10.1016/j.addma.2017.08.011. DOI

Bekas D. G.; Gkikas G.; Maistros G. M.; Paipetis A. S. On the use of dielectric spectroscopy for the real time assessment of the dispersion of carbon nanotubes in epoxy. RSC Adv. 2016, 6, 78838–78845. 10.1039/C6RA15594D. DOI

Mendes-Felipe C.; Oliveira J.; Costa P.; Ruiz-Rubio L.; Iregui A.; González A.; Vilas J. L.; Lanceros-Mendez S. Stimuli responsive UV cured polyurethane acrylated/carbon nanotube composites for piezoresistive sensing. Eur. Polym. J. 2019, 120, 109226.10.1016/j.eurpolymj.2019.109226. DOI

Mutiso R. M.; Winey K. I. Electrical properties of polymer nanocomposites containing rod-like nanofillers. Prog. Polym. Sci. 2015, 40, 63–84. 10.1016/j.progpolymsci.2014.06.002. DOI

Kuilla T.; Bhadra S.; Yao D.; Kim N. H.; Bose S.; Lee J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. 10.1016/j.progpolymsci.2010.07.005. DOI

Shrestha L. K.; Shrestha R. G.; Yamauchi Y.; Hill J. P.; Nishimura T.; Miyazawa K.; Kawai T.; Okada S.; Wakabayashi K.; Ariga K. Nanoporous Carbon Tubes from Fullerene Crystals as the π-Electron Carbon Source. Angew. Chem., Int. Ed. 2015, 54, 951–955. 10.1002/anie.201408856. PubMed DOI

Demichelis F.; Pirri C. F.; Tagliaferro A.; Benedetto G.; Boarino L.; Spagnolo R.; Dunlop E.; Haupt J.; Gissler W. Mechanical and thermophysical properties of diamond-like carbon (DLC) films with different ratios. Diam. Relat. Mater. 1993, 2, 890–892. 10.1016/0925-9635(93)90245-W. DOI

Schmitz D. P.; Ecco L. G.; Dul S.; Pereira E. C. L.; Soares B. G.; Barra G. M. O.; Pegoretti A. Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling. Mater. Today Commun. 2018, 15, 70–80. 10.1016/j.mtcomm.2018.02.034. DOI

Verma P.; Bansala T.; Chauhan S. S.; Kumar D.; Deveci S.; Kumar S. Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer composites. J. Mater. Sci. 2021, 56, 11769–11788. 10.1007/s10853-021-05985-0. DOI

Masarra N.-A.; Batistella M.; Quantin J.-C.; Regazzi A.; Pucci M. F.; El Hage R.; Lopez-Cuesta J. M. Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique. Materials 2022, 15, 762.10.3390/ma15030762. PubMed DOI PMC

Sun C.; Peng W.; Huang M.; Zhao K.; Wang M. Constructing high-efficiency microwave shielding networks in multi-walled carbon nanotube/poly(ε-caprolactone) composites by adding carbon black and graphene nano-plates. Polym. Int. 2023, 72, 619–628. 10.1002/pi.6514. DOI

Peng J. P.; Zhang H.; Tang L. C.; Jia Y.; Zhang Z. Dielectric properties of carbon nanotubes/epoxy composites. J. Nanosci. Nanotechnol. 2013, 13, 964–969. 10.1166/jnn.2013.6041. PubMed DOI

He F.; Lau S.; Chan H. L.; Fan J. High Dielectric Permittivity and Low Percolation Threshold in Nanocomposites Based on Poly(vinylidene fluoride) and Exfoliated Graphite Nanoplates. Adv. Mater. 2009, 21, 710–715. 10.1002/adma.200801758. DOI

Dang Z.-M.; Wang L.; Yin Y.; Zhang Q.; Lei Q.-Q. Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites**. Adv. Mater. 2007, 19, 852–857. 10.1002/adma.200600703. DOI

Khurram A. A.; Rakha S. A.; Zhou P.; Shafi M.; Munir A. Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes. J. Appl. Phys. 2015, 118, 44105.10.1063/1.4927617. DOI

Chen Q.; Du P.; Jin L.; Weng W.; Han G. Percolative conductor/polymer composite films with significant dielectric properties. Appl. Phys. Lett. 2007, 91, 022912.10.1063/1.2757131. DOI

Chen H.; Pieuchot L.; Xiao P.; Dumur F.; Lalevée J. Water-soluble/visible-light-sensitivenaphthalimide derivative-based photoinitiatingsystems: 3D printing of antibacterial hydrogels. Polym. Chem. 2022, 13, 2918–2932. 10.1039/D2PY00417H. DOI

Bauhofer W.; Kovacs J. Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. 10.1016/j.compscitech.2008.06.018. DOI

Lepcio P.; Ondreas F.; Zarybnicka K.; Zboncak M.; Caha O.; Jancar J. Bulk polymer nanocomposites with preparation protocol governed nanostructure: the origin and properties of aggregates and polymer bound clusters †. Soft Matter. 2018, 14, 2094–2103. 10.1039/c8sm00150b. PubMed DOI

Upadhyay A. K.; Goyat M. S.; Kumar A. A review on the effect of oxide nanoparticles, carbon nanotubes, and their hybrid structure on the toughening of epoxy nanocomposites. J. Mater. Sci. 2022, 57, 13202–13232. 10.1007/s10853-022-07496-y. DOI

Huang M.; Shi Y.; Wang M. A comparative study on nanoparticle network-dependent electrical conductivity, electromagnetic wave shielding effectiveness and rheological properties in multiwall carbon nanotubes filled polymer nanocomposites. Polym. Compos. 2023, 44, 1188–1200. 10.1002/pc.27163. DOI

Tao J.-R.; Luo C.-L.; Huang M.-L.; Weng Y.-X.; Wang M. Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement. Composites, Part A 2023, 164, 107304.10.1016/j.compositesa.2022.107304. DOI

Yang Y.; Luo C.-L.; Chen X.-D.; Wang M. Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in-situ mechanical exfoliation and crosslinking with cations. Compos. Sci. Technol. 2023, 233, 109913.10.1016/j.compscitech.2023.109913. DOI

Hector Sandoval J.; Wicker R. B. Functionalizing stereolithography resins: Effects of dispersed multi-walled carbon nanotubes on physical properties. Rapid Prototyp. J. 2006, 12, 292–303. 10.1108/13552540610707059. DOI

Korčušková M.; Sevriugina V.; Ondreáš F.; Svatík J.; Tomal W.; Vishakha V.; Ortyl J.; Lepcio P. Photoactivity, conversion kinetics, nanoreinforcement, post-curing, and electric/dielectric properties of functional 3D printable photopolymer resin filled with bare and alumina-doped ZnO nanoparticles. Polym. Test. 2022, 116, 107798.10.1016/j.polymertesting.2022.107798. DOI

Huang Y. Y.; Ahir S. V.; Terentjev E. M. Dispersion rheology of carbon nanotubes in a polymer matrix. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 125422.10.1103/PhysRevB.73.125422. DOI

Tsai S. C.; Chen L. H.; Chu C. P.; Chao W. C.; Liao Y. C. Photo curable resin for 3D printed conductive structures. Addit. Manuf. 2022, 51, 102590.10.1016/j.addma.2021.102590. DOI

Gonzalez G.; Chiappone A.; Roppolo I.; Fantino E.; Bertana V.; Perrucci F.; Scaltrito L.; Pirri F.; Sangermano M. Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer 2017, 109, 246–253. 10.1016/j.polymer.2016.12.051. DOI

Jašek O.; Toman J.; Všianský D.; Jurmanová J.; Šnírer M.; Hemzal D.; Bannov A. G.; Hajzler J.; St’ahel P.; Kudrle V. Controlled high temperature stability of microwave plasma synthesized graphene nanosheets. J. Phys. D Appl. Phys. 2021, 54, 165201.10.1088/1361-6463/abdb6d. DOI

Krumschmidt H.; Kryschi C. Triplet state IR spectroscopy of aromatic homocycles and heterocycles. Chem. Phys. 1991, 154, 459–468. 10.1016/0301-0104(91)85028-F. DOI

Štaffová M.; Ondreáš F.; Svatík J.; Zbončák M.; Jančář J.; Lepcio P. 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties. Polym. Test. 2022, 108, 107499.10.1016/j.polymertesting.2022.107499. DOI

Bennett J. Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Addit. Manuf. 2017, 18, 203–212. 10.1016/j.addma.2017.10.009. PubMed DOI PMC

Hofstetter C.; Orman S.; Baudis S.; Stampfl J. Combining cure depth and cure degree, a new way to fully characterize novel photopolymers. Addit. Manuf. 2018, 24, 166–172. 10.1016/j.addma.2018.09.025. DOI

Rihova M.; Lepcio P.; Cicmancova V.; Frumarova B.; Hromadko L.; Bureš F.; Vojtova L.; Macak J. M. The centrifugal spinning of vitamin doped natural gum fibers for skin regeneration. Carbohydr. Polym. 2022, 294, 119792.10.1016/j.carbpol.2022.119792. PubMed DOI

Ondreas F.; Jancar J. Temperature, Frequency, and Small Static Stress Dependence of the Molecular Mobility in Deformed Amorphous Polymers near Their Glass Transition. Macromolecules 2015, 48, 4702–4716. 10.1021/acs.macromol.5b00550. DOI

Kaur D.; Bharti A.; Sharma T.; Madhu C. Dielectric Properties of ZnO-Based Nanocomposites and Their Potential Applications. Int. J. Opt. 2021, 2021, 1–20. 10.1155/2021/9950202. DOI

Hassanabadi H. M.; Wilhelm M.; Rodrigue D. A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheol. Acta 2014, 53, 869–882. 10.1007/s00397-014-0804-0. DOI

Zarybnicka K.; Ondreas F.; Lepcio P.; Kalina M.; Zboncak M.; Jancar J. Thermodynamic Parameters Controlling Nanoparticle Spatial Packing in Polymer Solutions. Macromolecules 2020, 53, 8704–8713. 10.1021/acs.macromol.0c00698. DOI

Ondreas F.; Lepcio P.; Zboncak M.; Zarybnicka K.; Govaert L. E.; Jancar J. Effect of Nanoparticle Organization on Molecular Mobility and Mechanical Properties of Polymer Nanocomposites. Macromolecules 2019, 52, 6250–6259. 10.1021/acs.macromol.9b01197. DOI

Wolff R.; Ehrmann K.; Knaack P.; Seidler K.; Gorsche C.; Koch T.; Stampfl J.; Liska R. Photo-chemically induced polycondensation of a pure phenolic resin for additive manufacturing. Polym. Chem. 2022, 13, 768–777. 10.1039/D1PY01665B. DOI

Kumar S. K.; Krishnamoorti R. Nanocomposites: Structure, Phase Behavior, and Properties. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 37–58. 10.1146/annurev-chembioeng-073009-100856. PubMed DOI

Matyjaszewski K.; Spanswick J.. Copper-Mediated Atom Transfer Radical Polymerization. Polymer Science: A Comprehensive Reference; Elsevier, 2012; pp 377–428.

Kondratenko M.; Stoyanov S. R.; Gusarov S.; Kovalenko A.; McCreery R. L. Theoretical Modeling of Tunneling Barriers in Carbon-Based Molecular Electronic Junctions. J. Phys. Chem. C 2015, 119, 11286–11295. 10.1021/jp5128332. DOI

Tomal W.; Krok D.; Chachaj-Brekiesz A.; Lepcio P.; Ortyl J. Harnessing light to create functional, three-dimensional polymeric materials: multitasking initiation systems as the critical key to success. Addit. Manuf. 2021, 48, 102447.10.1016/j.addma.2021.102447. DOI

Le T.-H.; Kim Y.; Yoon H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150.10.3390/polym9040150. PubMed DOI PMC

Rahi S. B.; Ghosh B.; Asthana P. A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET. J. Semicond. 2014, 35, 114005.10.1088/1674-4926/35/11/114005. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...