Matching Low Viscosity with Enhanced Conductivity in Vat Photopolymerization 3D Printing: Disparity in the Electric and Rheological Percolation Thresholds of Carbon-Based Nanofillers Is Controlled by the Matrix Type and Filler Dispersion
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
38075763
PubMed Central
PMC10701886
DOI
10.1021/acsomega.3c05683
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
This study investigated the impact of carbonaceous fillers (carbon black, multiwalled carbon nanotubes, graphene, and highly defective graphene) on aromatic and nonaromatic photopolymer resins' properties, such as viscosity, long-term stability, complex permittivity, curing efficiency, final conversion, storage modulus, heat deflection and glass transition temperatures, network density, and DC resistivity. The presented results also highlight challenges that must be addressed in designing and processing carbonaceous filler-based 3D-printed photopolymer resins. The improved dielectric and electrical properties were closely tied to the dispersion quality and filler-matrix affinity. It favored the enhanced dispersion of anisotropic fillers (nanotubes) in a compatible matrix above their percolation threshold. On the other hand, the dispersed filler worsens printability due to the elevated viscosity and deteriorated penetration depth. Nonetheless, electrical and rheological percolation was found at different filler concentrations. This window of despaired percolation combines highly enhanced conductivity with only mildly increased viscosity and good printability.
See more in PubMed
Taormina G.; Sciancalepore C.; Messori M.; Bondioli F. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. J. Appl. Biomater. Funct. Mater. 2018, 16, 151–160. 10.1177/2280800018764770. PubMed DOI
Bailey E. J.; Winey K. I. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog. Polym. Sci. 2020, 105, 101242.10.1016/j.progpolymsci.2020.101242. DOI
Manapat J. Z.; Chen Q.; Ye P.; Advincula R. C. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol. Mater. Eng. 2017, 302, 1600553.10.1002/mame.201600553. DOI
Mu Q.; Wang L.; Dunn C. K.; Kuang X.; Duan F.; Zhang Z.; Qi H. J.; Wang T. Digital light processing 3D printing of conductive complex structures. Addit. Manuf. 2017, 18, 74–83. 10.1016/j.addma.2017.08.011. DOI
Bekas D. G.; Gkikas G.; Maistros G. M.; Paipetis A. S. On the use of dielectric spectroscopy for the real time assessment of the dispersion of carbon nanotubes in epoxy. RSC Adv. 2016, 6, 78838–78845. 10.1039/C6RA15594D. DOI
Mendes-Felipe C.; Oliveira J.; Costa P.; Ruiz-Rubio L.; Iregui A.; González A.; Vilas J. L.; Lanceros-Mendez S. Stimuli responsive UV cured polyurethane acrylated/carbon nanotube composites for piezoresistive sensing. Eur. Polym. J. 2019, 120, 109226.10.1016/j.eurpolymj.2019.109226. DOI
Mutiso R. M.; Winey K. I. Electrical properties of polymer nanocomposites containing rod-like nanofillers. Prog. Polym. Sci. 2015, 40, 63–84. 10.1016/j.progpolymsci.2014.06.002. DOI
Kuilla T.; Bhadra S.; Yao D.; Kim N. H.; Bose S.; Lee J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. 10.1016/j.progpolymsci.2010.07.005. DOI
Shrestha L. K.; Shrestha R. G.; Yamauchi Y.; Hill J. P.; Nishimura T.; Miyazawa K.; Kawai T.; Okada S.; Wakabayashi K.; Ariga K. Nanoporous Carbon Tubes from Fullerene Crystals as the π-Electron Carbon Source. Angew. Chem., Int. Ed. 2015, 54, 951–955. 10.1002/anie.201408856. PubMed DOI
Demichelis F.; Pirri C. F.; Tagliaferro A.; Benedetto G.; Boarino L.; Spagnolo R.; Dunlop E.; Haupt J.; Gissler W. Mechanical and thermophysical properties of diamond-like carbon (DLC) films with different ratios. Diam. Relat. Mater. 1993, 2, 890–892. 10.1016/0925-9635(93)90245-W. DOI
Schmitz D. P.; Ecco L. G.; Dul S.; Pereira E. C. L.; Soares B. G.; Barra G. M. O.; Pegoretti A. Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling. Mater. Today Commun. 2018, 15, 70–80. 10.1016/j.mtcomm.2018.02.034. DOI
Verma P.; Bansala T.; Chauhan S. S.; Kumar D.; Deveci S.; Kumar S. Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer composites. J. Mater. Sci. 2021, 56, 11769–11788. 10.1007/s10853-021-05985-0. DOI
Masarra N.-A.; Batistella M.; Quantin J.-C.; Regazzi A.; Pucci M. F.; El Hage R.; Lopez-Cuesta J. M. Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique. Materials 2022, 15, 762.10.3390/ma15030762. PubMed DOI PMC
Sun C.; Peng W.; Huang M.; Zhao K.; Wang M. Constructing high-efficiency microwave shielding networks in multi-walled carbon nanotube/poly(ε-caprolactone) composites by adding carbon black and graphene nano-plates. Polym. Int. 2023, 72, 619–628. 10.1002/pi.6514. DOI
Peng J. P.; Zhang H.; Tang L. C.; Jia Y.; Zhang Z. Dielectric properties of carbon nanotubes/epoxy composites. J. Nanosci. Nanotechnol. 2013, 13, 964–969. 10.1166/jnn.2013.6041. PubMed DOI
He F.; Lau S.; Chan H. L.; Fan J. High Dielectric Permittivity and Low Percolation Threshold in Nanocomposites Based on Poly(vinylidene fluoride) and Exfoliated Graphite Nanoplates. Adv. Mater. 2009, 21, 710–715. 10.1002/adma.200801758. DOI
Dang Z.-M.; Wang L.; Yin Y.; Zhang Q.; Lei Q.-Q. Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites**. Adv. Mater. 2007, 19, 852–857. 10.1002/adma.200600703. DOI
Khurram A. A.; Rakha S. A.; Zhou P.; Shafi M.; Munir A. Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes. J. Appl. Phys. 2015, 118, 44105.10.1063/1.4927617. DOI
Chen Q.; Du P.; Jin L.; Weng W.; Han G. Percolative conductor/polymer composite films with significant dielectric properties. Appl. Phys. Lett. 2007, 91, 022912.10.1063/1.2757131. DOI
Chen H.; Pieuchot L.; Xiao P.; Dumur F.; Lalevée J. Water-soluble/visible-light-sensitivenaphthalimide derivative-based photoinitiatingsystems: 3D printing of antibacterial hydrogels. Polym. Chem. 2022, 13, 2918–2932. 10.1039/D2PY00417H. DOI
Bauhofer W.; Kovacs J. Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. 10.1016/j.compscitech.2008.06.018. DOI
Lepcio P.; Ondreas F.; Zarybnicka K.; Zboncak M.; Caha O.; Jancar J. Bulk polymer nanocomposites with preparation protocol governed nanostructure: the origin and properties of aggregates and polymer bound clusters †. Soft Matter. 2018, 14, 2094–2103. 10.1039/c8sm00150b. PubMed DOI
Upadhyay A. K.; Goyat M. S.; Kumar A. A review on the effect of oxide nanoparticles, carbon nanotubes, and their hybrid structure on the toughening of epoxy nanocomposites. J. Mater. Sci. 2022, 57, 13202–13232. 10.1007/s10853-022-07496-y. DOI
Huang M.; Shi Y.; Wang M. A comparative study on nanoparticle network-dependent electrical conductivity, electromagnetic wave shielding effectiveness and rheological properties in multiwall carbon nanotubes filled polymer nanocomposites. Polym. Compos. 2023, 44, 1188–1200. 10.1002/pc.27163. DOI
Tao J.-R.; Luo C.-L.; Huang M.-L.; Weng Y.-X.; Wang M. Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement. Composites, Part A 2023, 164, 107304.10.1016/j.compositesa.2022.107304. DOI
Yang Y.; Luo C.-L.; Chen X.-D.; Wang M. Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in-situ mechanical exfoliation and crosslinking with cations. Compos. Sci. Technol. 2023, 233, 109913.10.1016/j.compscitech.2023.109913. DOI
Hector Sandoval J.; Wicker R. B. Functionalizing stereolithography resins: Effects of dispersed multi-walled carbon nanotubes on physical properties. Rapid Prototyp. J. 2006, 12, 292–303. 10.1108/13552540610707059. DOI
Korčušková M.; Sevriugina V.; Ondreáš F.; Svatík J.; Tomal W.; Vishakha V.; Ortyl J.; Lepcio P. Photoactivity, conversion kinetics, nanoreinforcement, post-curing, and electric/dielectric properties of functional 3D printable photopolymer resin filled with bare and alumina-doped ZnO nanoparticles. Polym. Test. 2022, 116, 107798.10.1016/j.polymertesting.2022.107798. DOI
Huang Y. Y.; Ahir S. V.; Terentjev E. M. Dispersion rheology of carbon nanotubes in a polymer matrix. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 125422.10.1103/PhysRevB.73.125422. DOI
Tsai S. C.; Chen L. H.; Chu C. P.; Chao W. C.; Liao Y. C. Photo curable resin for 3D printed conductive structures. Addit. Manuf. 2022, 51, 102590.10.1016/j.addma.2021.102590. DOI
Gonzalez G.; Chiappone A.; Roppolo I.; Fantino E.; Bertana V.; Perrucci F.; Scaltrito L.; Pirri F.; Sangermano M. Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer 2017, 109, 246–253. 10.1016/j.polymer.2016.12.051. DOI
Jašek O.; Toman J.; Všianský D.; Jurmanová J.; Šnírer M.; Hemzal D.; Bannov A. G.; Hajzler J.; St’ahel P.; Kudrle V. Controlled high temperature stability of microwave plasma synthesized graphene nanosheets. J. Phys. D Appl. Phys. 2021, 54, 165201.10.1088/1361-6463/abdb6d. DOI
Krumschmidt H.; Kryschi C. Triplet state IR spectroscopy of aromatic homocycles and heterocycles. Chem. Phys. 1991, 154, 459–468. 10.1016/0301-0104(91)85028-F. DOI
Štaffová M.; Ondreáš F.; Svatík J.; Zbončák M.; Jančář J.; Lepcio P. 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties. Polym. Test. 2022, 108, 107499.10.1016/j.polymertesting.2022.107499. DOI
Bennett J. Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Addit. Manuf. 2017, 18, 203–212. 10.1016/j.addma.2017.10.009. PubMed DOI PMC
Hofstetter C.; Orman S.; Baudis S.; Stampfl J. Combining cure depth and cure degree, a new way to fully characterize novel photopolymers. Addit. Manuf. 2018, 24, 166–172. 10.1016/j.addma.2018.09.025. DOI
Rihova M.; Lepcio P.; Cicmancova V.; Frumarova B.; Hromadko L.; Bureš F.; Vojtova L.; Macak J. M. The centrifugal spinning of vitamin doped natural gum fibers for skin regeneration. Carbohydr. Polym. 2022, 294, 119792.10.1016/j.carbpol.2022.119792. PubMed DOI
Ondreas F.; Jancar J. Temperature, Frequency, and Small Static Stress Dependence of the Molecular Mobility in Deformed Amorphous Polymers near Their Glass Transition. Macromolecules 2015, 48, 4702–4716. 10.1021/acs.macromol.5b00550. DOI
Kaur D.; Bharti A.; Sharma T.; Madhu C. Dielectric Properties of ZnO-Based Nanocomposites and Their Potential Applications. Int. J. Opt. 2021, 2021, 1–20. 10.1155/2021/9950202. DOI
Hassanabadi H. M.; Wilhelm M.; Rodrigue D. A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheol. Acta 2014, 53, 869–882. 10.1007/s00397-014-0804-0. DOI
Zarybnicka K.; Ondreas F.; Lepcio P.; Kalina M.; Zboncak M.; Jancar J. Thermodynamic Parameters Controlling Nanoparticle Spatial Packing in Polymer Solutions. Macromolecules 2020, 53, 8704–8713. 10.1021/acs.macromol.0c00698. DOI
Ondreas F.; Lepcio P.; Zboncak M.; Zarybnicka K.; Govaert L. E.; Jancar J. Effect of Nanoparticle Organization on Molecular Mobility and Mechanical Properties of Polymer Nanocomposites. Macromolecules 2019, 52, 6250–6259. 10.1021/acs.macromol.9b01197. DOI
Wolff R.; Ehrmann K.; Knaack P.; Seidler K.; Gorsche C.; Koch T.; Stampfl J.; Liska R. Photo-chemically induced polycondensation of a pure phenolic resin for additive manufacturing. Polym. Chem. 2022, 13, 768–777. 10.1039/D1PY01665B. DOI
Kumar S. K.; Krishnamoorti R. Nanocomposites: Structure, Phase Behavior, and Properties. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 37–58. 10.1146/annurev-chembioeng-073009-100856. PubMed DOI
Matyjaszewski K.; Spanswick J.. Copper-Mediated Atom Transfer Radical Polymerization. Polymer Science: A Comprehensive Reference; Elsevier, 2012; pp 377–428.
Kondratenko M.; Stoyanov S. R.; Gusarov S.; Kovalenko A.; McCreery R. L. Theoretical Modeling of Tunneling Barriers in Carbon-Based Molecular Electronic Junctions. J. Phys. Chem. C 2015, 119, 11286–11295. 10.1021/jp5128332. DOI
Tomal W.; Krok D.; Chachaj-Brekiesz A.; Lepcio P.; Ortyl J. Harnessing light to create functional, three-dimensional polymeric materials: multitasking initiation systems as the critical key to success. Addit. Manuf. 2021, 48, 102447.10.1016/j.addma.2021.102447. DOI
Le T.-H.; Kim Y.; Yoon H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150.10.3390/polym9040150. PubMed DOI PMC
Rahi S. B.; Ghosh B.; Asthana P. A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET. J. Semicond. 2014, 35, 114005.10.1088/1674-4926/35/11/114005. DOI