Revealing human impact on natural ecosystems through soil bacterial DNA sampled from an archaeological site
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
French Agency for AlUla Development (AFALULA) in the frame of the Oasis program supported by the Royal Commission of AlUla (RCU), Saudi Arabia
PubMed
38086774
DOI
10.1111/1462-2920.16546
Knihovny.cz E-zdroje
- MeSH
- antropogenní vlivy MeSH
- Bacteria genetika MeSH
- DNA bakterií genetika MeSH
- ekosystém * MeSH
- lidé MeSH
- půda * chemie MeSH
- půdní mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- půda * MeSH
Human activities have affected the surrounding natural ecosystems, including belowground microorganisms, for millennia. Their short- and medium-term effects on the diversity and the composition of soil microbial communities are well-documented, but their lasting effects remain unknown. When unoccupied for centuries, archaeological sites are appropriate for studying the long-term effects of past human occupancy on natural ecosystems, including the soil compartment. In this work, the soil chemical and bacterial compositions were compared between the Roman fort of Hegra (Saudi Arabia) abandoned for 1500 years, and a preserved area located at 120 m of the southern wall of the Roman fort where no human occupancy was detected. We show that the four centuries of human occupancy have deeply and lastingly modified both the soil chemical and bacterial compositions inside the Roman fort. We also highlight different bacterial putative functions between the two areas, notably associated with human occupancy. Finally, this work shows that the use of soils from archaeological sites causes little disruption and can bring relevant information, at a large scale, during the initial surveys of archaeological sites.
Centre Camille Julian CNRS Université Aix Marseille Aix en Provence France
CNRS Orient et Méditerranée Textes Archéologie Histoire Paris France
Department of Culture Faculty of Art University of Helsinki Helsinki Finland
Department of Plant Taxonomy and Nature Conservation University of Gdańsk Gdańsk Poland
Faculty of Science Department of Experimental Plant Biology Charles University Prague Czech Republic
Zobrazit více v PubMed
Addison, S.L., Smaill, S.J., Garrett, L.G. & Wakelin, S.A. (2019) Effects of forest harvest and fertilizer amendment on soil biodiversity and function can persist for decades. Soil Biology and Biochemistry, 135, 194-205.
Almazroui, M., Nazrul Islam, M., Athar, H., Jones, P.D. & Rahman, M.A. (2012) Recent climate change in the Arabian peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978-2009. International Journal of Climatology, 32, 953-966.
Bardgett, R.D. & van der Putten, W.H. (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
Berger, D., Soles, J.S., Giumlia-Mair, A.R., Brügmann, G., Galili, E., Lockhoff, N. et al. (2019) Isotope systematics and chemical composition of tin ingots from Mochlos (Crete) and other late bronze age sites in the eastern Mediterranean Sea: an ultimate key to tin provenance? PLoS One, 14, e0218326.
Boot, C.M., Hall, E.K., Denef, K. & Baron, J.S. (2016) Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem. Soil Biology and Biochemistry, 92, 211-220.
Burt, J.A. & Bartholomew, A. (2019) Towards more sustainable coastal development in the Arabian gulf: opportunities for ecological engineering in an urbanized seascape. Marine Pollution Bulletin, 142, 93-102.
Cantera, I., Coutant, O., Jézéquel, C., Decotte, J.-B., Dejean, T., Iribar, A. et al. (2022) Low level of anthropization linked to harsh vertebrate biodiversity declines in Amazonia. Nature Communications, 13, 3290.
Carini, P., Delgado-Baquerizo, M., Hinckley, E.-L.S., Holland-Moritz, H., Brewer, T.E., Rue, G. et al. (2020) Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. mBio, 11, e02776-19.
Cook, K.H. & Vizy, E.K. (2015) Detection and analysis of an amplified warming of the Sahara Desert. Journal of Climate, 28, 6560-6580.
Davis, N.M., Proctor, D.M., Holmes, S.P., Relman, D.A. & Callahan, B.J. (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome, 6, 226.
de Vries, F.T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, 38, 2092-2103.
Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J., Bardgett, R.D. et al. (2018) A global atlas of the dominant bacteria found in soil. Science, 359, 320-325.
Djemiel, C., Maron, P.-A., Terrat, S., Dequiedt, S., Cottin, A. & Ranjard, L. (2022) Inferring microbiota functions from taxonomic genes: a review. GigaScience, 11, giab090.
Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M. et al. (2020) PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685-688.
Epp Schmidt, D.J., Pouyat, R., Szlavecz, K., Setälä, H., Kotze, D.J., Yesilonis, I. et al. (2017) Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology & Evolution, 1, 1-9.
Fagorzi, C., Del Duca, S., Venturi, S., Chiellini, C., Bacci, G., Fani, R. et al. (2019) Bacterial communities from extreme environments: Vulcano Island. Diversity, 11, 140.
Fang, Q., Feng, Y., Feng, P., Wang, X. & Zong, Z. (2019) Nosocomial bloodstream infection and the emerging carbapenem-resistant pathogen Ralstonia insidiosa. BMC Infectious Diseases, 19, 334.
Fenoglio, M.S., Rossetti, M.R. & Videla, M. (2020) Negative effects of urbanization on terrestrial arthropod communities: a meta-analysis. Global Ecology and Biogeography, 29, 1412-1429.
Fiema, Z.T. (2018) The Roman military camp in ancient Hegra. By Zbigniew T. Fiema and François Villeneuve. In: Sommer, C.S. & Matesic, S. (Eds.) Limes XXIII. Proceedings of the 23rd international congress of Roman frontier studies Ingolstadt 2015. Verlag: Kommission: Nünnerich-Asmus.
Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L. et al. (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 109, 21390-21395.
Frindte, K., Pape, R., Werner, K., Löffler, J. & Knief, C. (2019) Temperature and soil moisture control microbial community composition in an arctic-alpine ecosystem along elevational and micro-topographic gradients. The ISME Journal, 13, 2031-2043.
Gadd, G.M. (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156, 609-643.
Gallas, G. & Pavao-Zuckerman, M. (2022) Spatial cover and carbon fluxes of urbanized Sonoran Desert biological soil crusts. Scientific Reports, 12, 5794.
Giguet-Covex, C., Pansu, J., Arnaud, F., Rey, P.-J., Griggo, C., Gielly, L. et al. (2014) Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nature Communications, 5, 3211.
Guerra, C.A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S. et al. (2020) Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11, 3870.
Guzzon, R., Franciosi, E. & Toffanin, A. (2022) Investigation by high-throughput sequencing methods of microbiota dynamics in spontaneous fermentation of Abruzzo (South Italy) wines. Agronomy, 12, 3104.
Huang, S.-L., Yeh, C.-T. & Chang, L.-F. (2010) The transition to an urbanizing world and the demand for natural resources. Current Opinion in Environmental Sustainability, 2, 136-143.
Khanaeva, T.A., Suslova, M.Y., Zemskaya, T.I., Molodin, V.I., Pilipenko, A.S. & Parzinger, G. (2013) Microbial diversity in the samples from archeological complexes of the Pazyryk culture (IV-III centuries BC) in northwestern Mongolia. Microbiology, 82, 43-51.
Lê, S., Josse, J. & Husson, F. (2008) FactoMineR: an R package for multivariate analysis. Journal of Statistical Software, 25, 1-18.
Lichtheim, M. (2019) Ancient Egyptian literature. Berkeley: University of California Press.
Liu, C., Cui, Y., Li, X. & Yao, M. (2021) Microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97, fiaa255.
Louca, S., Parfrey, L.W. & Doebeli, M. (2016) Decoupling function and taxonomy in the global ocean microbiome. Science, 353, 1272-1277.
Makhalanyane, T.P., Valverde, A., Gunnigle, E., Frossard, A., Ramond, J.-B. & Cowan, D.A. (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiology Reviews, 39, 203-221.
Margesin, R., Siles, J.A., Cajthaml, T., Öhlinger, B. & Kistler, E. (2017) Microbiology meets archaeology: soil microbial communities reveal different human activities at archaic Monte Iato (sixth century BC). Microbial Ecology, 73, 925-938.
Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17, 10-12.
Mathisen, R.W. (2018) Ancient Roman civilization: history and sources: 753 BCE to 640 CE. Oxford: Oxford University Press.
McFadden, I.R., Sendek, A., Brosse, M., Bach, P.M., Baity-Jesi, M., Bolliger, J. et al. (2022) Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecology Letters, 26, 203-218.
McMurdie, P.J. & Holmes, S. (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8, e61217.
Nehmé, L. (2020) The religious landscape of Northwest Arabia as reflected in the Nabataean, Nabataeo-Arabic, and pre-Islamic Arabic inscriptions. Semitica et Classica, 13, 127-154.
Nehmé, L. (2021) Guide to Hegra. Archaeology in the Land of the Nabataeans of Arabia. Paris, SKIRA.
Pastor, A., Gallello, G., Cervera, M.L. & de la Guardia, M. (2016) Mineral soil composition interfacing archaeology and chemistry. TrAC Trends in Analytical Chemistry, 78, 48-59.
Pelosi, C., Bertrand, C., Daniele, G., Coeurdassier, M., Benoit, P., Nélieu, S. et al. (2021) Residues of currently used pesticides in soils and earthworms: a silent threat? Agriculture, Ecosystems & Environment, 305, 107167.
Petrolli, R., Augusto Vieira, C., Jakalski, M., Bocayuva, M.F., Vallé, C., Cruz, E.D.S. et al. (2021) A fine-scale spatial analysis of fungal communities on tropical tree bark unveils the epiphytic rhizosphere in orchids. New Phytologist, 231, 2002-2014.
Prestel, E., Salamitou, S. & DuBow, M.S. (2008) An examination of the bacteriophages and bacteria of the Namib desert. Journal of Microbiology, 46, 364-372.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596.
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584.
Sansone, D. (2016) Ancient Greek civilization. Hoboken: John Wiley & Sons.
Schwarcz, H.P. (2002) Chronometric dating in archaeology: a review. Accounts of Chemical Research, 35, 637-643.
Scott, C.B. (2020) Integrating multi-scalar sampling strategies for archaeological sediment chemistry. Journal of Field Archaeology, 45, 588-607.
Siles, J.A., Öhlinger, B., Cajthaml, T., Kistler, E. & Margesin, R. (2018) Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy). Scientific Reports, 8, 1903.
Teixeira, L.C.R.S., Peixoto, R.S., Cury, J.C., Sul, W.J., Pellizari, V.H., Tiedje, J. et al. (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME Journal, 4, 989-1001.
Terrat, S., Plassart, P., Bourgeois, E., Ferreira, S., Dequiedt, S., Adele-Dit-De-Renseville, N. et al. (2015) Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition. Microbial Biotechnology, 8, 131-142.
Thiele-Bruhn, S., Bloem, J., de Vries, F.T., Kalbitz, K. & Wagg, C. (2012) Linking soil biodiversity and agricultural soil management. Current Opinion in Environmental Sustainability, 4, 523-528.
van den Boogaart, K.G. & Tolosana-Delgado, R. (2008) “Compositions”: a unified R package to analyze compositional data. Computers & Geosciences, 34, 320-338.
van der Steen, E.J. (2019) The archaeology of Jordan: a condensed history. Journal of Eastern Mediterranean Archaeology and Heritage Studies, 7, 149-164.
Wang, H., Marshall, C.W., Cheng, M., Xu, H., Li, H., Yang, X. et al. (2017) Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Scientific Reports, 7, 44049.
Williams, R., Taylor, G. & Orr, C. (2020) pXRF method development for elemental analysis of archaeological soil. Archaeometry, 62, 1145-1163.
Wu, S., Liu, L., Li, D., Zhang, W., Liu, K., Shen, J. et al. (2022) Global desert expansion during the 21st century: patterns, predictors and signals. Land Degradation & Development, 34, 377-388.
Wu, W., Kuang, L., Li, Y., He, L., Mou, Z., Wang, F. et al. (2021) Faster recovery of soil biodiversity in native species mixture than in Eucalyptus monoculture after 60 years afforestation in tropical degraded coastal terraces. Global Change Biology, 27, 5329-5340.
Yu, S., Wu, Z., Xu, G., Li, C., Wu, Z., Li, Z. et al. (2022) Inconsistent patterns of soil fauna biodiversity and soil physicochemical characteristic along an urbanization gradient. Frontiers in Ecology and Evolution, 9, 1-12.