Complex Study of Straw Suitability for the Production of Nonindustrial Straw Pellets
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38107905
PubMed Central
PMC10720279
DOI
10.1021/acsomega.3c07057
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nonindustrial straw pellets should comply with limitations on the content of ash, chlorine, nitrogen, sulfur, and heavy metals, and have a high melting temperature of ash. To produce such pellets, the properties of straw can be improved by leaching. In known papers, the completion of chlorine washing-out was not controlled. Aims of the paper were to study ash solubility at leaching of straw until completion of chlorine removal and to make a conclusion on studied straw suitability for the production of nonindustrial pellets. Aims were achieved by straw soaking with heating to 100 °C and subsequent plug flow flashing with control of leaching completion by the absence of chlorine in leachate; studying the ash, chlorine, nitrogen, sulfur, and heavy metals content of straw; studying the thermal behavior of ash at heating; determining the initial deformation temperature (IDT) of ash; and comparing the properties of original and leached straw with the specification of straw pellets. Straw leaching until completion of chlorine washing-out provided decreasing chlorine, nitrogen, and sulfur contents below limitations, and the ash content decreased from 7.15 to 3.93% at water leaching to 4.29% at leaching with a 10% solution of acetic acid. In the ternary diagram, the composition of straw ash shifted from a zone of low melting eutectics to zones of high-melting tridymite and cristobalite. The IDT of the original straw ash was 847, 1250 °C after water leaching, and above 1275 °C after leaching with an acetic acid solution. Monitoring the absence of chlorine in the leaching liquid can be applied as a control parameter for straw leaching completion. The original straw was not suitable for the production of nonindustrial pellets because of the high contents of Cl, S, and Cr and the low IDT of ash. All indexes of straw were improved due to leaching, but the Cr content was above limitation. Producers of pellets need to assess straw suitability as to heavy metal content both in the original and leached states.
Zobrazit více v PubMed
Energy strategy of Ukraine for the period till year 2035 “Safety, energy efficiency, competitiveness”. Council of Ministers of Ukraine. Order 605-r of 18 august 2017. https://zakon.rada.gov.ua/laws/show/605-2017-p?lang=en (In Ukrainian).
Kudria S. O., Ed. Atlas of Energy Potential of Renewable Energy Sources of Ukraine; Institute of Renewable Energy of the National Academy of Sciences of Ukraine: Kyiv, 2020, 82 p. (In Ukrainian).
Obernberger I.; Thek G.. The pellet handbook. The production and thermal utilization of pellets; Earthscan Ltd.: : London, 2010. 549 p.
ISO 17225-1:2017. Solid biofuels – Fuel specifications and classes – Part 1: General requirements; ISO: Geneva, 2017. 64 p.
ISO 17225-6:2014. Solid biofuels – Fuel specifications and classes – Part 6: Graded non-woody pellets; ISO: Geneva, 2014. 10 p.
Werther J.; Saenger M.; Hartge E. U.; Ogada T.; Siagi Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. 10.1016/S0360-1285(99)00005-2. DOI
Nikolaisen L., Ed. Straw for energy production. Technology – Environment – Economy, Second ed.; The Centre for Biomass Technology, 1998, 53 p.
Obernberger I.; Biedermann F.; Widmann W.; Riedl R. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass and Bioenergy 1997, 12 (3), 211–224. 10.1016/S0961-9534(96)00051-7. DOI
Miles T.; Miles T. Jr.; Baxter L.; Bryers R.; Jenkins B.; Oden L. Boiler deposits from firing biomass fuels. Biomass and Bioenergy 1996, 10 (2–3), 125–138. 10.1016/0961-9534(95)00067-4. DOI
Baxter L.; Miles T.; Miles T. Jr.; Jenkins B.; Milne T.; Dayton D.; Bryers R.; Oden L. The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process. Technol. 1998, 54, 47–78. 10.1016/S0378-3820(97)00060-X. DOI
Jenkins B. M.; Baxter L. L.; Miles T. R. Jr.; Miles T. R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. 10.1016/S0378-3820(97)00059-3. DOI
Jandačka J.; Holubčik M.; Papučik Š.; Nosek R. Combustion of pellets from wheat straw. Acta Montan. Slovaka 2012, 17 (4), 283–289.
ISO 21404:2020. Solid biofuels. Determination of ash melting behaviour; ISO: Geneva, 2020. 13 p.
ASTM D1857/D1857M-18. Standard Test Method for Fusibility of Coal and Coke Ash; ASTM International: West Conshohocken, PA, 2018.
Phyllis 2. Database for biomass and waste. https://phyllis.nl.
Hartmann H.; Böhm T.; Maier L. Naturbelassene biogene Festbrennstoffe – umweltrelevante Eigenschaften und Einflussmöglichkeiten. Technischer Bericht, Bayrisches Staatsministerium für Landesentwicklung und Umweltfragen. Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen. 2000, 148 s.
Wopienka E.; Carvalho L.; Ohman M.; Schwabl M.; Hastlinger W.. Evaluation of ash melting behavior of solid biomass based on fuel analyses. In Proceedings of the 19th European Biomass Conference and exhibition, Berlin, 2011. pp 1283–1286. http://www.etaflorence.it/proceedings/?detail=7225.
Jandačka J.; Holubčik M.; Papučik Š.; Nosek R. Combustion of pellets from wheat straw. Acta Montan. Slovaca 2012, 17 (4), 283–289.
EN 15270:2007. Pellet burners for small heating boilers - Definitions, requirements, testing, marking; European Committee for Standardization: Brussels, 2008. 51 p.
EN 303-5:2012. Heating boilers - Part 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW - Terminology, requirements, testing and marking. European Committee for Standardization: Brussels, 2012, 81 p.
ENplus. Quality Certification Scheme for Wood Pellets. ENplus Handbook. Part 3: Pellet Quality Requirements. Version 3.0; European Pellet Council. European Biomass Association: Brussels, 2015, 10 p.
CEN/TS 15370–1:2006. Solid biofuels. Method for the determination of ash melting behaviour. Part 1: Characteristic temperatures method; European Committee for Standardization: Brussels, 2007, 14 p.
Jenkins B. M.; Bakker R. R.; Wei J. B. On the properties of washed straw. Biomass and Bioenergy 1996, 10 (4), 177–200. 10.1016/0961-9534(95)00058-5. DOI
Alabdrabalameer H. A.; Taylor M. J.; Kauppinen J.; Soini T.; Pikkarainenc T.; Skoulo V. Big problem, little answer: overcoming bed agglomeration and reactor slagging during the gasification of barley straw under continuous operation. Sustainable Energy Fuels 2020, 4, 3764.10.1039/d0se00155d. DOI
Zevenhoven-Onderwater M.Ash-forming Matter in Biomass Fuels, PhD thesis; Department of Chemical Engineering, Åbo Akademi University: Turku, Finland, 2001. 85 p.
Aston J. E.; Thompson D. N.; Westover T. L. Performance assessment of dilute-acid leaching to improve corn stover quality for thermochemical conversion. Fuel 2016, 188, 311–319. 10.1016/j.fuel.2016.08.056. DOI
Wang X.; Xiong Z.; Li X.; Hu Z.; Wang Y.; Peng B.; Li J.; Wei B.; Luo G.; Yao H. Flue gas-enhanced water leaching: AAEM removal from agricultural organic solid waste and fouling and slagging suppression during its combustion. ACS Omega 2023, 8, 16241–16250. 10.1021/acsomega.3c00690. PubMed DOI PMC
Holubčik M.; Jandačka J.; Palacka M.; Vician P. Additives Application to Wheat Straw to Increasing the Ash Fusion Temperature. AIP Conf. Proc. 2016, 1768, 02001410.1063/1.4963036. DOI
Dragutinovic N.; Nakomcic-Smaragdakis B.; Djuric S.; Djordjic D. Investigation of additives in combustion of wheat straw pellets in a small scale boiler. Journal of renewable and sustainable energy 2019, 11 (4), 04310110.1063/1.5088640. DOI
Staniforth A. R.Cereal straw; Clarendon Press (Oxford University Press): Oxford, UK, 1979, 175 p.
Sander B.Fuel Data for Danish Biofuels and Improvement of the Quality of Straw and Whole Crops. In Proceedings of the 9th European Conference on Bioenergy in Copenhagen; Biomass for Energy and the Environment (Vol. 3); Elsevier Science Ltd.: Oxford, England, 1996, pp. 490–495. https://www.tib.eu/en/search/id/BLCP:CN018739663/Fuel-Data-for-Danish-Biofuels-and-Improvement-of?cHash=1525e3b9d56c6d0fa38b0eb9cd29499e.
Kasper B.Stoffwandlungen und Logistik pflanzenbürtiger Festbrennstoffe in einer umweltgerechten Landnutzungsalternative für den Spreewald. Dissertation an der Landwirtschaftlich-Gärtnerischen Fakultät der Humboldt-Universität zu Berlin. Forschungsbericht Agrartechnik des Arbeitskreises Forschung und Lehre der Max-Eyth-Gesellschaft Agrartechnik im VDI (VDI-MEG), Selbstverlag, 1977. 164 S. (Quoted at the reference16).
Thompson D. N.; Shaw P. G.; Lacey J. A. Post-harvest processing methods for reduction of silica and alkali metals in wheat straw. Appl. Biochem. Biotechnol. 2003, 105–108, 205–218. 10.1007/978-1-4612-0057-4_16. PubMed DOI
Ghaffar S. H.; Fan M.; Zhou Y.; Madyan O. A. Detailed analysis of wheat straw node and internode for their prospective efficient utilization. J. Agric. Food Chem. 2017, 65 (41), 9069–9077. 10.1021/acs.jafc.7b03304. PubMed DOI
Wu S.; Chen J.; Peng D.; Wu Z.; Li Q.; Huang T. Effects of water leaching on the ash sintering problems of wheat straw. Energies 2019, 12, 387.10.3390/en12030387. DOI
Ma Q.; Han J.; Huang G. Evaluation of different water-washing treatments effects on wheat straw combustion properties. Bioresour. Technol. 2017, 245 (part A), 1075–1083. 10.1016/j.biortech.2017.09.052. PubMed DOI
Said N.; Abdel Daiem M. M.; García-Maraver A.; Zamorano M. Reduction of ash sintering precursor components in rice straw by water washing. BioResources 2014, 9 (4), 6756–6764. 10.15376/biores.9.4.6756-6764. DOI
Rozwadowski A.; Dziok T. The impact of repeated water soaking of cereal straw on the slagging index and the formation of deposits on heating surfaces of power boilers. Polityka Energ. 2018, 21 (2), 125–138. 10.24425/122775. DOI
Baxter L. L.A Task 2. Pollutant emission and deposit formation during combustion of biomass fuels. Livermore, (CA), 1994. (Quoted at the reference 25).
Glarborg P.; Jensen P. A.; Dam-Johansen K.; Illerup J. B.; Karlstrom M. O.; Brink A.; Zevenhoven M.; Huoa M.; Scharler R.; Brunner T.; Obernberger I.; Lovas T.; Fradsen F., Ed. Scientific Tools for Fuel Characterization for Clean and Efficient Biomass Combustion; SciToBiCom Final Report. DTU, 2013, 212 p. https://findit.dtu.dk/en/catalog/537f109174bed2fd2100e7c7.
Lebendig F.; Funcia I.; Pérez-Vega R.; Müller M. Investigations on the Effect of Pre-Treatment of Wheat Straw on Ash-Related Issues in Chemical Looping Gasification (CLG) in Comparison with Woody Biomass. Energies 2022, 15 (9), 3422.10.3390/en15093422. DOI
ISO 14780:2017. Solid biofuels. Sample preparation; ISO: Geneva, 2017, 20 p.
Methods of analysis. Water soluble extractives. Method 1 (hot extraction method); U.S. Pharmacopeia, http://www.pharmacopeia.cn/v29240/usp29nf24s0_c561s5.html.
ISO 18134-2:2017. Solid biofuels – Determination of moisture content – Oven dry method – Part 2: Total moisture – Simplified method; ISO: Geneva, 2017, 5 p.
ISO 18122:2022. Solid biofuels – Determination of ash content; ISO: Geneva, 2022, 7 p.
ISO 16994:2016. Solid biofuels – Determination of total content of sulfur and chlorine; ISO: Geneva, 2015. 13 p.
ISO 5983-1:2005. Animal feeding staff – Determination of nitrogen content and calculation of crude protein content – Part 1: Kjeldal method; ISO: Geneva, 2005/2008. 9 p.
Lachman J.; Baláš M.; Lisý M.; Lisá H.; Milčák P.; Elbl P. An overview of slagging and fouling indicators and their applicability to biomass fuels. Fuel Process. Technol. 2021, 217, 10680410.1016/j.fuproc.2021.106804. DOI
Garcia-Maraver A.; Mata-Sanchez J.; Carpio M.; Perez-Jimenez J. A. Critical review of predictive coefficients for biomass ash deposition tendency. Journal of the Energy Institute 2017, 90, 214–228. 10.1016/j.joei.2016.02.002. DOI
Curetti N.; Pastero L.; Bernasconi D.; Cotellucci A.; Corazzari I.; Archetti M.; Pavese A. Thermal stability of calcium oxalates from CO2 sequestration for storage purposes: An In-Situ HT-XRPD and TGA combined study. Minerals 2022, 12 (1), 53.10.3390/min12010053. DOI
ISO 16967:2015. Solid biofuels - Determination of major elements – Al, Ca, Fe, Mg, P, K, Si, Na and Ti; ISO: Geneva, 2011, 14 p.
ISO 16995:2015. Solid biofuels - Determination of the water soluble chloride, sodium and potassium content; ISO: Geneva, 2015, 10 p.
Directive 2001/80/EC of the European Parliament and of the Council of 23 October 2001 on the limitation of emissions of certain pollutants into the air from large combustion plants. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2001.309.01.0001.01.ENG. pp. 1–27.
Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:334:0017:0119:en:PDF. pp. 17–119.
Directive (EU) 2015/2193 of the European Parliament and of the Council of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L2193 pp. 1–19.
Hansen L. A.; Frandsen F. J.; Dam-Johansen K.; Sorensen H. S. Quantification of fusion in ashes from solid fuel combustion. Thermochim. Acta 1999, 326, 105–117. 10.1016/S0040-6031(98)00596-6. DOI
Obernberger I.; Brunner T.. Advanced characterization methods for solid biomass fuels. IEA Bioenergy Task 32 project report. 2015, 72 p. https://task32.ieabioenergy.com/wp-content/uploads/sites/24/2017/03/IEA_Bioenergy_T32_Advanced_characterisation_methods_for_solid_biomass_fuels.pdf.
Roedder E. Silicate melt systems. Phys. Chem. Earth 1959, 3, 224–297. 10.1016/0079-1946(59)90007-2. DOI
Ohman M.; Nordin A.; Hedman H.; Jirjis R. Reasons for slagging during stemwood pellet combustion and some measures for prevention. Biomass and Bioenergy 2004, 27, 597–605. 10.1016/j.biombioe.2003.08.017. DOI
Vamvuka D.; Zografos D. Predicting the behaviour of ash from agricultural wastes during combustion.. In: East Meets West Heavy Oil Technol. Symp. 2004, 83, 2051–2057. 10.1016/j.fuel.2004.04.012. DOI